
Scaling Storage and Computation
with Apache Hadoop

Konstantin V. Shvachko

Yahoo!

4 October 2010

What is Hadoop

• Hadoop is an ecosystem of tools for processing
“Big Data”

• Hadoop is an open source project• Hadoop is an open source project

• Yahoo! a primary developer of Hadoop since 2006

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Big Data

• Big Data management, storage and analytics

• Large datasets (PBs) do not fit one computer

– Internal (memory) sort

– External (disk) sort

– Distributed sort– Distributed sort

• Computations that need a lot of compute power

Big Data: Examples

• Search Webmap as of 2008 @ Y!

– Raw disk used 5 PB

– 1500 nodes

• Large Hadron Collider: PBs of events• Large Hadron Collider: PBs of events

– 1 PB of data per sec, most filtered out

• 2 quadrillionth (1015) digit of πis 0

– Tsz-Wo (Nicholas) Sze

– 23 days vs 2 years before

– No data, pure CPU workload

Big Data: More Examples

• eHarmony

– Soul matching

• Banking• Banking

– Fraud detection

• Processing of astronomy data

– Image Stacking and Mosaicing

Hadoop is the Solution

• Architecture principles:

– Linear scaling

– Reliability and Availability

– Using unreliable commodity hardware

– Computation is shipped to data – Computation is shipped to data

No expensive data transfers

– High performance

Hadoop Components

HDFS Distributed file system

MapReduce Distributed computation

Zookeeper Distributed coordination

HBase Column storeHBase Column store

Pig Dataflow language

Hive Data warehouse

Avro Data Serialization

Chukwa Data Collection

Hadoop Core

• A reliable, scalable, high performance distributed
computing system

• Reliable storage layer

– The Hadoop Distributed File System (HDFS)

– With more sophisticated layers on top– With more sophisticated layers on top

• MapReduce – distributed computation framework

• Hadoop scales computation capacity, storage capacity,
and I/O bandwidth by adding commodity servers.

• Divide-and-conquer using lots of commodity hardware

MapReduce

• MapReduce – distributed computation framework

– Invented by Google researchers

• Two stages of a MR job

– Map: {<Key,Value>} -> {<K’,V’>}

– Reduce: {<K’,V’>} -> {<K’’,V’’>}– Reduce: {<K’,V’>} -> {<K’’,V’’>}

• Map – a truly distributed stage
Reduce – an aggregation, may not be distributed

• Shuffle – sort and merge,
transition from Map to Reduce
invisible to user

MapReduce Workflow

Mean and Standard Deviation

∑=

n

i
x

n 1

1
µ• Mean

• Standard deviation
∑ −=

n

i
x

n 1

2
)(

1
µσ

1

2

1

22

1

2

11

22

1

1
)

1
(2

1

µσ

µµσ

∑

∑∑∑

−=

+−=

n

i

nn

i

n

i

x
n

n
x

n
x

n

Map Reduce Example:
Mean and Standard Deviation

• Input: large text file

• Output: µ and σ

Mapper

• Map input is the set of words {w} in the partition

– Key = Value = w

• Map computes

– Number of words in the partition

– Total length of the words ∑length(w)– Total length of the words ∑length(w)

– The sum of length squares ∑length(w)2

• Map output

– <“count”, #words>

– <“length”, #totalLength>

– <“squared”, #sumLengthSquared>

Single Reducer

• Reduce input

– {<key, value>}, where

– key = “count”, “length”, “squared”

– value is an integer

• Reduce computes• Reduce computes

– Total number of words: N = sum of all “count” values

– Total length of words: L = sum of all “length” values

– Sum of length squares: S = sum of all “squared” values

• Reduce Output

– µ = L / N

– σ= S / N - µ2

Hadoop Distributed File System
HDFS

• The name space is a hierarchy of files and directories

• Files are divided into blocks (typically 128 MB)

• Namespace (metadata) is decoupled from data

– Lots of fast namespace operations, not slowed down by

– Data streaming– Data streaming

• Single NameNode keeps the entire name space in RAM

• DataNodes store block replicas as files on local drives

• Blocks are replicated on 3 DataNodes for redundancy

HDFS Read

• To read a block, the client requests the list of replica
locations from the NameNode

• Then pulling data from a replica on one of the DataNodes

HDFS Write

• To write a block of a file, the client requests a list of
candidate DataNodes from the NameNode, and
organizes a write pipeline.

Replica Location Awareness

• MapReduce schedules a task assigned to process block
B to a DataNode possessing a replica of B

• Data are large, programs are small

• Local access to data

Name Node

• NameNode keeps 3 types of information

– Hierarchical namespace

– Block manager: block to data-node mapping

– List of DataNodes

• The durability of the name space is maintained by a • The durability of the name space is maintained by a
write-ahead journal and checkpoints

– A BackupNode creates periodic checkpoints

– A journal transaction is guaranteed to be persisted before

replying to the client

– Block locations are not persisted, but rather discovered

from DataNode during startup via block reports.

Data Nodes

• DataNodes register with the NameNode, and provide
periodic block reports that list the block replicas on hand

• DataNodes send heartbeats to the NameNode

– Heartbeat responses give instructions for managing

replicasreplicas

• If no heartbeat is received during a 10-minute interval,
the node is presumed to be lost, and the replicas hosted
by that node to be unavailable

– NameNode schedules re-replication of lost replicas

Quiz:
What Is the Common Attribute?

HDFS size

• Y! cluster

– 70 million files, 80 million blocks

– 15 PB capacity

– 4000 nodes. 24,000 clients

– 41 GB heap for NN– 41 GB heap for NN

• Data warehouse Hadoop cluster at Facebook

– 55 million files, 80 million blocks

– 21 PB capacity

– 2000 nodes. 30,000 clients

– 57 GB heap for NN

Benchmarks

• DFSIO

– Read: 66 MB/s

– Write: 40 MB/s

• Observed on busy cluster

– Read: 1.02 MB/s– Read: 1.02 MB/s

– Write: 1.09 MB/s

• Sort (“Very carefully tuned user application”)

Bytes
(TB)

Nodes Maps Reduces Time HDFS I/O Bytes/s

Aggregate
(GB/s)

Per Node
(MB/s)

1 1460 8000 2700 62 s 32 22.1

1000 3558 80,000 20,000 58,500 s 34.2 9.35

ZooKeeper

• A distributed coordination service for distributed apps

– Event coordination and notification

– Leader election

– Distributed locking

• ZooKeeper can help build HA systems• ZooKeeper can help build HA systems

HBase

• Distributed table store on top of HDFS

– An implementation of Googl’s BigTable

• Big table is Big Data, cannot be stored on a single node

• Tables: big, sparse, loosely structured.

– Consist of rows, having unique row keys– Consist of rows, having unique row keys

– Has arbitrary number of columns,

– grouped into small number of column families

– Dynamic column creation

• Table is partitioned into regions

– Horizontally across rows; vertically across column families

• HBase provides structured yet flexible access to data

HBase Functionality

• HBaseAdmin: administrative functions

– Create, delete, list tables

– Create, update, delete columns, families

– Split, compact, flush

• HTable: access table data• HTable: access table data

– Result HTable.get(Get g) // get cells of a row

– void HTable.put(Put p) // update a row

– void HTable.put(Put[] p) // batch update of rows

– void HTable.delete(Delete d) // delete cells/row

– ResultScanner getScanner(family) // scan col family

HBase Architecture

Pig

• A language on top of and to simplify MapReduce

• Pig speaks Pig Latin

• SQL-like language

• Pig programs are translated into a
series of MapReduce jobsseries of MapReduce jobs

Hive

• Serves the same purpose as Pig

• Closely follows SQL standards

• Keeps metadata about Hive tables in MySQL DRBM

Hadoop User Groups

