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Abstract

B-trees have currently become standard data structure for representing dynamic dic-
tionaries in external memory. The main disadvantage of B-trees is that they lead to an
exhaustive waste of memory, when lengths of records stored in a B-tree differ greatly from
each other. The paper suggests a new type of balanced trees which generalize traditional
B-trees, and avoid their drawback mentioned above. The new data structure, called S(1)-
trees, restricts not the number of records per node, but rather their total length. We define
utilization of S(1)-trees which is different from that of B-trees, and prove the 1/2 —¢
lower bound for it, where ¢ is inversely proportional to the tree branching. Logarithmic
running time algorithms for search, insertion and deletion are presented. S(1)-trees can be
considered as an alternative to the classical B-trees for the majority of dynamic dictionary

applications.

1 Introduction

The problem of maintaining dynamic dictionaries is a classical problem of the theory of
data structures. As usual, “dynamic dictionary” means a data structure for storing the
dictionary elements, called keys (records), together with algorithms of access to, insertion,
and deletion of a key.

Several tree data structures have been developed that provide for efficient solutions
to the problem. Since access time to a key in a tree-like structure depends on height of
the tree, the balanced trees are preferable. However, fully balanced trees occur rarely.
Therefore, so called weak balance conditions were considered that lead to approximately
equal access time for different tree keys rather than exactly equal, as in case of the fully
balanced trees.



Probably, the first data structure for the problem was studied by G.M.Adel’son-Vel’skii
and E.M.Landis [AVL62], [F73]. The approach is based on binary trees that satisfy the
following balance condition. For any tree node the difference between the heights of
its two child subtrees is at most 1. These trees, called AVL-trees, allow of logarithmic
time algorithms of search, insertion and deletion, and are appropriate for maintaining
dictionaries in the internal memory.

Another variant of week balance condition is used in 2-3 trees, which for the first time
were examined by J.Hopcroft in 1970 (unpublished, see [LD91]). In contrast to AVL-trees
all leaf nodes of a 2-3 tree are located at the same level of the tree. Balancing here is
achieved by varying the out-degrees of the internal nodes, which can be either 2 or 3
[GST8], [Y78]. It is interesting to note that any 2-3 tree can be simply transformed into
an AVL-tree.

B-trees, proposed by R.Bayer [B72], [BM72], generalize the notion of 2-3 trees. They
have the same regular structure, but the out-degree of the tree internal nodes may range
between g+ 1 and 2¢g + 1, for a fixed parameter ¢, called the tree order. From a practical
viewpoint B-trees are suitable for maintaining dictionaries in external memory. While
a number of variants of B-trees have been examined ([K71], [W86], [TF82], [W93]) all
of them are based on the same idea of counting the number of keys in (equivalently, the
number of children of) a node.

What is important for us is that with at least ¢ and at most 2¢ keys in each node, any
n-vertex B-tree is going to hold no less than gn, and no more than 2¢n keys. In other
words we say that the tree utilization is lower-bounded by 1/2, where utilization is the
ratio of the total number of keys, contained in the tree, to the maximal number 2¢n of
keys that can contain a B-tree with n nodes.

The disadvantages of B-trees have been widely discussed (see e.g. [K71], [PS92], and
[S93]) in the context of this space lower bound. The bottom line is that B-trees utilize
memory well only when the keys are of (almost) identical length, while otherwise they
lead to an exhaustive waste of memory.

Probably for the first time, the problem that using B-trees for storing variable length
keys is wasteful was mentioned in [K71] (with a reference to an unpublished result of
Thomas H. Martin). The idea leads to a modification of B-trees that allows however to
keep the algorithms almost unchanged. This idea was precisely formulated, developed,
and analyzed in [PS92].

In [PS92] it is also suggested a new tree data structure, called B-trees with unfixed
key length, which is based on that it restricts the total sum of lengths of keys in a node
rather than the number of keys per node. These trees allow of logarithmic time algorithms
of search, insertion and deletion.

It was proven that any such tree with n nodes must contain a key set of total length
greater than pn/4, where p is the constant, which sets the maximum for total length of
keys in one node. In other words, the tree utilization exceeds 1/4.

Utilization for the new trees is different from the utilization of B-trees. In our case
utilization is the ratio of the total length of keys, contained in the tree, to the maximal
length np of keys that can contain such a tree with n nodes.

Utilization computed for B-trees in that way, can not be bounded by any constant
greater than 0. It is easy to show that if the lengths of keys differ from each other
drastically, the utilization of length for B-trees can drop to any desirable (or rather



undesirable) number, say, to 1/10.

This paper generalizes the notion of B-tree with unfixed key length by introducing
S(1)-trees (read as sweep-one-trees).  S(1)-trees combine the structure of the unfixed
key length trees with high branching of usual B-trees. It is shown that B-trees and 2-3
trees are the special cases of S(1)-trees.

The 1/2 — ¢ utilization lower bound is proven for S(1)-trees, where ¢ is inversely
proportional to the tree branching. So the same utilization value as for B-trees is achieved,
but in case of S(1)-trees it means the ‘pure’ utilization, that is, no restrictions on the
key length is assumed. The lower bound is shown to be unimprovable.

The running time bounds for S(1)-trees remain unchanged compared to the case of
B-trees with unfixed key length.

[M77] is another work that deals with variable length keys. In [M77] a strategy for
allocating keys, having variable lengths, across nodes of a B*-tree is proposed. “This
strategy results in shallow trees with fast access time”. The idea is to put short keys
nearer to the root, and the longest keys nearer to the leaves, in order to obtain higher
branching of the tree internal nodes. McCreight’s ideas can be used in implementations
for making the basic algorithms for S(1)-trees more efficient on average.

D.Wood in [W93] emphasizing the importance of B*-trees — a modification of B-trees
whose internal part forms a B-tree, — says that “today, they are considered to be the only
data structure to use for large external files, when the total ordering is important” (p.393),
and also that “for external dictionaries, the BT-tree is the only choice” (p.392). However
S(1)-trees appear to be more efficient than traditional B-trees for many applications.
Historically for the first time S(1)-trees were implemented in the Starset programming
language for representing set data aggregates [(G94].

The paper is organized as follows. In Section 2 we remind the reader the definition of
B-trees, and show their inefficiency in case of variable key length. Then we introduce our
data model, and compare the definitions of the two tree data structures. Starting from
simple examples, and considering height 1 trees, we prove in Section 3 our main result: the
1/2—¢ lower bound of utilization of S(1)-trees. Algorithms for the three basic operations
over S(1)-trees, described in Section 4, are based on a rather simple idea that in order to
restore broken balance of a node it is necessary to consider its neighbors, and to relocate
keys within the nodes if possible.

2 Basic definitions

2.1 Trees

Definition 2.1 Let K be a finite set of elements called keys. Define tree inductively:
1. Object A, called empty tree, is a tree,

2. Ifkiy... ky € K and Ty, Ty, ..., T, are trees, then tuple (To, k1, T4, . .. ky,Ty) is

also a tree.

By subtree of non-empty tree T' = (To, k1,14, .. ., km, 1) we mean T itself and any
subtree of any tree T; (0 < i < m).



It S and R are subtrees of 7', and R is a subtree of S, then R is called a descendant
of S'in T, and S is called an ancestor of R in T. If S and R are subtrees of T', such
that S = (So,01,51,...,lm, Sp) and S; = R for some ¢, then R is called the i-th direct
descendant of S, and S is called the direct ancestor of Rin T.

A graph is a very natural and customary representation for this kind of tree. For each
tree T a (labeled) graph G(T') = (V(T), E(T)) that represents it, consists of the vertex
set V(T'), that is, the set of all non-empty subtrees of T', and the set of edges E(T),
which is defined in the following way. If S and R are non-empty subtrees of 7', such that
R is the i-th direct descendant of S, then the pair (S, R) is an edge labeled by number
i. Each vertex S = (So, 4, S1,...,Ln, Sm) in the tree is labeled by the sequence of keys
(liy. oyl

The out-degree of a vertex is the number of its non-empty direct descendants. Vertex
S is called a leaf if its out-degree is 0. Vertex S = (So,l1,S1,...,ln, Sp) 1s an internal
vertex if its out-degree equals m + 1. Vertex T' is called a root of tree T

We say that vertex F'is a common ancestor of vertices S and R, iff F' is an ancestor
for both S and R. F' is said to be a nearest common ancestor of vertices S and R, if F' is
a common ancestor of S and R, and if none of the common ancestors for the vertices S,
R is a descendant of F'.

A sequence of natural numbers (iy,...,%,) is called a path of length n in tree T', iff
there exists a sequence of non-empty subtrees Sg, S1,...,5, of T, such that Sp = 7" and
each S; is the ¢;-th direct descendant of S;_1(y = 1,...,n). We say in this case that the
path leads to vertex S,,, and length n is said also to be a level of S, in T

Height of a tree is its maximal path length.

For each tree T, let K(T') denote the set of keys that 7' contains:

K(A) =10, K({(To, k1, Th, ...k, Tn)) = {k1,. .k} UK(To) U ... U K(T},)
Let k(T') denote the set of keys that the root vertex of tree T' contains:
k(A) - @, k(<T0, kl, Tl, ey km, Tm>) - {kl, ey km}

Thus for each vertex S of a tree, K(S) denotes the set of keys that are contained in
subtree S, and k(S) is the set of keys from K(S) that does not belong to any proper
subtree of S.

2.2 B-trees

Definition 2.2 Let < be a linear order on a set of keys K. Let ¢ > 0 be a natural
number. A tree T is called B-tree of order ¢ iff either T'= A, orT # A and the following

conditions hold:

1. For each vertex S = (So,l1,5, ..., ln, Sm) of T

h<...<ly and Yi(l <i<m= (Vk e K(Si-1))(Vk' € K(S))(k < ; < k"))

2. Fach vertex of tree T is either an internal vertex or a leaf

3. All paths in T from the root to leaves have equal length
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4. For each vertex S of T |k(S)] < 2¢

5. For each non-root vertex S |k(S)| > ¢
Proposition 2.1 IfT is an n-vertex B-tree of order q, then |K(T)|—|k(T)| > g(n—1).

This important property of B-trees is a consequence of Definition 2.2. Together with
Proposition 2.2 it makes B-trees applicable for representing ordered data.

The three basic operations of search, insertion and deletion of a key in a tree can
be efficiently performed for B-trees. The classical algorithms for the operations are

well known (see [K71], [W86], [TF82], [LD91]), and all of them have logarithmic time

complexity.

Proposition 2.2 If B-tree T has n vertices, then search, insertion and deletion can be
performed in time O(logn) for it.

2.3 B-trees with variable length keys

B-trees are used when amount of information to be maintained is large and can not be
stored in internal memory. In this case all information is stored on disk. The machine
can work with only a part of data at a moment, reading it every time from disk by pieces
of fixed size, called blocks.

A typical problem when the data structure of B-trees is used is the problem of
maintaining dictionaries. Dictionary is a set of keys. Initially the dictionary is empty.
The problem is to support three main operations: search, insertion to, and deletion from
the dictionary.

Generally, the dictionary can store records of very arbitrary structure. For simplicity
let us suppose that keys are words in this section.

In practice it is usually supposed that word length is bounded by some constant. For
B-trees it means that blocks are composed of cells of fixed capacity equal to the maximal
word length. Words are stored in cells — one word per cell. As words can have different
lengths up to the maximal possible, some cells can be filled not completely. Our aim is
to capture this loss of storage resource.

Consider a  B-tree where each cell can contain 8 symbols, but the input for the
dictionary mostly consists of four-letter words. In this case most cells are half filled, that
is, a tree node is at most half filled on average even if it contains the maximal number of
words. When the upper bound of word length is small, then the amount of space lost is
not critical. But if we allow words of length 100 as well as of length 1, then the loss of
efficiency may be too big.

Formally. Let a set of keys K be the set () of all words of length not exceeding I.
Let an n-vertex B-tree T' contain |K(T')| words of the total length ¢(7"). A tree T' can
not contain more than 2gn words. So the sum of their lengths is at most 2gnl. If the
average word length is, for example, [/10 then the total length of words in 7' is bounded
by the following values



We see that Proposition 2.1 does not reflect the real situation adequately. And we
conclude that it is reasonable to use B-trees when the length of keys (words) is almost
constant. For example, if the dictionary consists of words of equal length, i.e., K = 3.

We define here a tree data structure, which generalizes B-trees, and is intended for
efficient representation of arbitrary key sets. Informally, the difference between B-trees
and the new trees, called S(1)-trees, is that nodes of a S(1)-tree are not composed of
cells of fixed capacity, but rather store keys one by one without any extra space between
them. Thus instead of bounding the number of keys, we bound the total length of the
keys in a node.

For this kind of trees we can give a more adequate definition of utilization, which is
the total length of keys of a S(1)-tree divided by the maximal capacity of a S(1)-tree,
having the same number of nodes as the given tree.

It is important that utilization defined for B-trees in this way can not be bounded
by any constant greater than zero.

2.4  S(1)-trees

Let u be a weight function that maps each key k£ € K to its weight p(k), which is a
positive natural number. If S = (So,l1,51,...,0ln, Sm) is a vertex of tree T then its
weight is p(S) = >, u(li). A complete weight of the tree is the sum M(T) =Y u(S) of
weights of all vertices of T'.

Let T' be a tree that satisfies the first three conditions (1, 2, 3), called structural
properties, of Definition 2.2 of a B-tree. We introduce a neighboring relation on the
vertex set of T" as follows. Let L and R be vertices of the same level of the tree. Consider
a set of keys [ = K(L)U K(R). Then vertex L is said to be a left neighbor of vertex R,
and R is said to be a right neighbor of L, iff there exists a unique key k belonging to the
key set K(T') \ I that satisfies the following property

(Ve K(L)(Vr € K(R)(I < k< 1)

Key k is called a delimiting key for neighboring nodes L and R. We say also that k
separates the neighbors.

Note, that the delimiting key for any pair of neighboring nodes belongs to the nearest
common ancestor of the neighbors.

Informally, the nodes L and R are neighbors, iff they are located at one level of the
tree, and no other tree node of the same level are located between L and R.

Definition 2.3 Let < be a linear order on a key set K, and p be a weight function on
K. Let p > 0 and ¢ > 0 be natural numbers. A tree T is called S(1)-tree of rank p and
order ¢ iff either T'= A or T # A and the following conditions hold:

1. For each vertex S = (So,l1,5, ..., L, Sm) of T
h<...€ly and Vi(1 <i<m= (Vke K(Si-1))(VE € K(S)(k < l; < k')
2. Fach vertex of tree T is either an internal vertex or a leaf

3. All paths in T from the root to leaves have equal length
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4. For each vertex S of T its weight u(S) <p

5. For each pair of neighboring vertices L. and R with delimiting key k
W(L) + (k) + u(R) > p
6. For each non-root vertex S |k(S)| > ¢

S(1)-tree is a generalization of B-tree in the following sense.

Example 2.1 Consider weight function pg that identically equals 1 on K. Then each
B-tree of order ¢ will be a S(1)-tree of rank 2¢ and order ¢ with the weight function wo.
Let’s verify conditions 4 and 5 of Definition 2.3.

(1) ol S) = [K(S)] < 2.

(5) Consider a pair of neighboring nodes L and R with delimiting key k

po(L) + po(k) + po(R) = [K(L)] + 1 + [K(R)| =2 ¢ + 144 > 2q

2.5 Comparing the data structures

Formally, in B-trees (Definition 2.2) we count the number of keys in each tree node, and
demand this number to be at most 2¢g. 2¢ is the node capacity here, which means that a
node can not hold more than the given number of keys.

Condition 5 of Definition 2.2, called the balance condition, is intended to provide the
following two basic properties of B-trees. First, it guarantees that all (non-root) nodes
of any B-tree are at least half filled, that is, the number of keys allowed in a node varies
between ¢ and 2¢g. Second, it provides high branching of the tree internal nodes, which
varies between g + 1 and 2¢g + 1.

In S(1)-trees (Definition 2.3) we take into account mostly not the number of keys in
a node but rather their total weight. This total weight is upper-bounded (condition 4)
with constant p, which is the tree rank, and which determines the weight capacity of the
tree nodes.

The balance condition 5 of Definition 2.3 is formulated not locally for each node as in
case of B-trees, but in terms of neighboring nodes. It provides high density of a S(1)-
tree in general even if some of the nodes are almost empty. Such nodes in the tree are
“balanced” with their neighbors, which must be almost full in this case.

Condition 5 at the same time can not guarantee high branching of the S(1)-tree
internal nodes. That is why condition 6 is used, which states a lower bound for the
number of keys, stored in one node, as in B-trees. The condition forces the tree to
branch intensively, thus making it “shorter”, but “wider”. We will see later how this
affects the space lower bounds and basic algorithms.

It is important to note that for S(1)-trees the tree order ¢ doesn’t depend on the
node capacity so strictly, as in case of B-trees. The order can vary between 1 and B—)J

Therefore, in  S(1)-trees the two properties of high density and high branching are
not combined in one condition, and this is the main reason why the class of S(1)-trees is
broader than that of B-trees.



Another reason for it is that keys in a node can be counted by means of an appropriate
weight function, like po from Example 2.4, where B-trees are shown to be the special
case of S(1)-trees.

As mentioned above the balance condition for S(1)-trees is formulated in terms of
neighboring nodes, unlike B-trees, where the balance condition can be checked within
one node.

Our ongoing research is to analyze S(b)-trees (pronounced as sweep-be-trees) for an
arbitrary parameter b. Intuitively, parameter b here determines the number of neighbors
of a node that should be examined in order to check the balance condition.

For B-trees, as we know, this number equals 0. From this point of view one can
consider B-trees of order ¢ as S(0)-trees of rank 2¢, order ¢, and weight function po = 1
on K.

For S(1)-trees the number of neighbors is 1, that is, for any node one should check
that the node is balanced with both of its neighbors.

For b = 2, the balance condition should be applied to the following three vicinities of
any node of an S(2)-tree:

1. the vicinity, composed of the current node, its left neighbor, and the left neighbor
of the left neighbor;

2. the vicinity, composed of the current node, and its left and right neighbors;

3. the vicinity, composed of the current node, its right neighbor, and the right neighbor
of the right neighbor.

For arbitrary b, the number of vicinities that should be checked for each node is at
most b+ 1, and the number of neighbors and neighbors of neighbors, and so on, is exactly
b. So ‘sweep’ here means the number of neighboring nodes that must be “seen” from each
of the tree nodes.

3 Space lower bounds for S(1)-trees

3.1 Simple bounds

In this section we analyze the space efficiency of rank p S(1)-trees. Our complexity
measure, called utilization and denoted by A, is a ratio of the total weight M(T') of a
given tree T' to the maximal possible weight np of any n-vertex S(1)-tree of rank p

Our aim is to build a lower bound for utilization A. The simplest, but the most
general, space lower bound for utilization of S(1)-trees gives

Proposition 3.1 Let T be an n-vertex S(1)-tree of rank p. Then

A(T) >

|



Proof. Each vertex of the tree contains at least one key, whose weight is at least
one. Thus for any vertex S its weight p(S) > 1. Then the total weight of T is M(S) > n,

and its utilization is A(T") = %f) > 21—). O

Proposition 3.2 Let T' be an n-vertex S(1)-tree. If n >3 then

1
A(T —
(1) > 1

Proof. Consider a partition of the set of leaves of T" into disjoint pairs of neighboring

nodes {L;, R;},2=1,...,s. Let k; be a delimiting key for each pair {L;, R;}. Then
M(T) > > (u(Li) + plki) + p(Ri)) > sp
i=1

An out-degree of any internal node of a S(1)-tree is at least 2. Thus the number of leaves
x of the tree is greater than the number of its internal nodes, i.e.
n
x> 5

On the other hand, since the pairs of neighboring nodes {L;, R;} are disjoint, then the
number of pairs is
it
2

This implies that s > % and M(T') > "%, That is,

1
~ 1
O
This is also a simple lower bound. And this is the best we can get in the case, when

the tree order ¢ is not restricted. But as we will see below the i lower bound is attainable

only for the very special case of S(1)-trees. In more regular situation we can obtain
better bounds.

3.2 The main theorem

Let us consider two important examples.

Example 3.1 Let T'= (T4, k,T1) be a S(1)-tree consisting of n = 3 vertices. Then
by Definition 2.3, M(T') = u(To) + p(k) + p(11) > p and hence A(T') > 1/3.

Example 3.2 Let a tree T' = (Tg, k1,14, k2, T5) have n = 4 vertices. Let their weights
be p(ki) = p(ky) = 1, ie., u(T) =2, and let p(To) = p(Ty) =1, and p(71) = p. This tree
is a S(1)-tree and we may see that

T T T T 11

A(r) < B ulTo) + (1) (T 11

4p 4 p

For large enough values of p (p > 12) the following inequality holds

1/4 < A(T) < 1/3

As our next step in deriving a more general theorem let’s consider trees of height 1.
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Lemma 3.3 Let an n-vertex S(1)-tree T' of rank p be of height 1. Then

n—1

M(T)Z[ ;

Proof. Fixn >3, and let m =n — 2.

Consider an n-vertex tree S = (So,l1,51,...,ln, Sm) of height 1 with the following
weights of its vertices: u(l;) =1 for all e = 1,...,m, i.e., weight of the root is u(S) = m;
even leaves are of weight p(S;;) = 0, and odd leaves are of weight p(S941) = p (¢ =
0,...,|m/2]). Note that S is not a S(1)-tree, since even descendants of the root are
empty trees, while odd are not. So root S is neither a leaf, nor an internal vertex. This
contradicts Definition 2.3 (c. 2). It is easy to see that M(S) = l%J p+n—2. We are
going to prove that for any n-vertex S(1)-tree T'= (T, k1,74, ..., ky,Tmn) of rank p and
of height 1, its weight M(T') is at least M(S).

From the set V = {To,T1,..., Ty, Trt1} of all vertices of T', where T),,41 = T, we
choose a subset W consisting of those vertices T; whose weights u(7T;) are less than weights
©(S;) of the corresponding vertices of tree S.

W =A{T; e V| p(Ti) < p(5:)}
If W =0, then M(T) > M(S). Let W # ), then the following two properties hold:
. T¢Ww,
2. it T; € W, then 7 is odd.
Solet W ={T;,,...,T; }, where indices 0 < ¢; <m (j = 1,...,r) are odd numbers.
Consider the sum M(7T') and group addends in the following way
M(T) = [p(Tiy 1) + plkiy) + (T + -+ + [0(Tim1) + ks, ) + p(T5)] 4+ Zo(T)
Combine addends of the sum M(S) similarly
M(S) = [p(Si—1) + plley) + p(Si)] + -+ + [(Si,—1) + pls,) + p(S:,)] + Zo(5)

Let us compare the two sums. First, consider ¥o(7'), which is the weight sum of
vertices that do not belong to W, plus weights of a number of keys from the root of 7'
According to the definition of set W, and since the keys from the root of S have minimal
possible weight 1, we get

Jp—l—n—Z

Yo(T) > X0(9)
Second, for all y =1,...,r
(T 1) + p(hiy) + p(Ty) > p+1 =04+ 14 p = p(Si;—1) + u(ly;) + p(S;,)
This means that M(7T) > M(S). a

Corollary 3.4 Let d > 2 be the oul-degree of the root node of a rank p S(1)-tree T
having height 1. Then

1. For any even d  A(T) > %d% + Zl)d:__}
2. For any odd d A(T) > %le;—} + ]l)ill——}
3. If d+#3, then A(T)Z%—k;—p
4. If d =3, then A(T)Zi—k;—p
5. For all d AT) > (3 +1) 42



Proof. Estimates 1, 2 follow from the definition of utilization A, by substituting
n = d+1 to the bound (see Lemma 3.3) for M(7T') and discovering the meaning of integer
division for the cases of, respectively, even and odd d’s.

Estimates 3, 4 are the special cases of estimates 1, 2, and estimate 5 is their general-
ization. O

The following simple combinatorial inequality will be actively used below.

Lemma 3.5 Lete,a;,b;(i = 1,...,m) be positive real numbers such that a;/b; > e. Then

Eal/i bZ Z S
=1 =1

Proof. a; > eb;. Hence, X" a; > > b;. O
Theorem 3.6 Let T' be an n-vertex S(1)-tree of rank p and order q.
1. In general case, for n > p/2 A(T) > i
2. If none of the internal vertices of T has
out-degree 3, then forn > p A(T) > &
3. Ifq >3, then forn > (¢+ 1)p/2 A(T) > %Jﬁ

Proof. Consider the following partition of the vertex set V of T'. First choose subsets
Vi (i =1,...,s1). Each V; consists of all leaves of T' outcoming from a common direct
ancestor and of the ancestor itself. Consider now a tree 7" obtained from the initial tree
T by discarding the vertices that belong to the union of the sets V. Let us consider a
set of leaves of 7" and their predecessors, and construct new subsets Vi, 4, (1 =1,...,52)
from them in the same manner as it was done for tree 7. Throw out selected vertices
from 7" and continue the process until either the remaining tree is empty or it consists
of the unique root vertex T'. Suppose that the subsets V;,...,V, have been built to that
moment. Then in the former case (when the empty tree is what remains) let Vi, = 0,
and in the latter case let V,41 = {T'}. Hence we got a partition V =V, U--- UV, U V4
such that V;N'V; = 0 for ¢ # j.

Each vertex set V; (i < s) together with the edges that connect them in 7' determines
a S(1)-tree of height 1. For referring to these trees we will use the same symbols V; as

for their vertex sets. Let n; = |Vi|. Then Y5 n; = n and also 53! M(V;) = M(T).

Let us prove estimate 3. Let a = ill_T_—}, where d = ¢+ 1 > 4 is a lower bound for
the out-degrees of internal vertices of T'. Using the above, and estimate 5 from Corollary
3.4 we conclude that utilization of a height 1 S(1)-tree is majorized by a monotonically
increasing function of the out-degree of the tree root. Therefore if the out-degree of the

root of V; (¢ < s) is not less than d, then for ¢ = a (% + ]lo) we have

M(V;)
n;p

> ¢

Consider the case when V4 # 0, that is, the height of 7" is even. Then

A(T) = M”(z;[) — 2= Mé;/i)-}-u(T) > L=y Z)(mﬂ _
— Z;:l M(Vi)‘|‘(pa/2+1)—pa/2 _ le M(V})—|—(pa/2+1) _a
- np - > i tp 2n
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Since pa/;“ > ¢ and (,p) > ¢ (¢ < s), then using Lemma 3.5 we have estimate 3 of
the theorem. For n > p/2
1 1
ATy >24+2 25 =T
2 p 2n 2 2g+2

Now consider the case when V,;; = 0, that is, the height of T" is odd.
It the out-degree of the root node of 7' is not less than d, then by Lemma 3.5 and

Corollary 3.4 we easily get

M(T LMV, 1
A(T) ( ):Zz_sl ( )2€>_—CL
np 2 i=1 TP 2
If the out-degree of the root node of T' = (T, k1, T4, . .., kp, Tr) is less than d, that
is, m < ¢, then by estimate 5 of Corollary 3.4
M)
n;p

for all 2 < s, and by estimate 4 of the corollary we have

M(Vs) 1
> —
ngp 4
where n, = m + 2.
Utilization in this case is
A(T) = M@ _ REMOp)
np np
_ Ef:_ll M(Vi)+(nspa/24+M(Vs))—nspa/2 _ i1 M(Vz)—}—(nspa/Q—I—M(VS)) _ ans
- np N S oil) miptnep n
We see that 51 MV .
nspa/2 + M(V;) >SS
nsp 2 4
since p > 2qma(K) and ¢ > 3, that is, ]% < 11_9 < é < %.

Now using Lemma 3.5, and the fact that m < d — 2, for all n > dp/2 we obtain

ang

2n

A(T)>e—

This completes the proof of estimate 3.

1

>_—CL

a(m + 2)
2n

Analogously using Lemma 3.5 and Corollary 3.4 we can prove estimates 1 and 2 for

thevaluesofaz%—I—;—pan(jlg:%_|_:%7
can be obtained:

1) For alln > p/2 AT)> 1+ 21_p
2) Foralln>p A(T)Z%_|_3L
Summary:

In the general case (estimate 1), when the out-
And as it can be seen from Example 3.2

1/4 is the lower bound of Proposition 3.2.

~ Ll
3n

respectively. Finally the following lower bounds

= >

4n

O

W=

degree of internal nodes is not restricted,

this estimate is almost sharp. But the trees with that low utilization have very specific
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structure. Namely, almost all of its internal nodes should have out-degree 3. Otherwise
the lower bound rises up to 1/3 (estimate 2). And, finally, estimate 3 guarantees that the
more highly branching the tree is the higher its lower bound of utilization. The limit as
the out-degree goes to infinity of these lower bounds is 1/2, which is the upper bound of
lower bounds for utilization of S(1)-trees.

Corollary 3.7 Let K be a key set. Then for any ¢ > 0 there exist two parameters p, and
q, such that for any S(1)-tree of rank p order q having n > (¢+1)p/2 nodes its utilization
8

1

Proof. Let ¢g=11ife > %, and let ¢ = % — 2 otherwise.

It g =1, then by Theorem 3.6

1 1
// _— —_—
A(ﬂ)>4>0>:2 €

If ¢ > 1, then using again the Theorem we get

1 2
A(T) > -1

1 B
2¢+2 2 q+2 2 °

4 Algorithms

4.1 Searching

The search operation for S(1)-trees is performed in the usual way for tree data structures.
We will not present a detailed search algorithm here, but will give an informal description
of it. The search algorithm for a key k in a S(1)-tree T' consists of at most logarithmically
many steps of local search in a tree node. It begins from the root node. For each node
S = (So, k1,51, ..., km, Sm) the search algorithm scans the key set of S in order to find
(using e.g. binary search algorithm) a key k; which is greater than or equal (according to
the linear order < on the set of keys K') to the given key k. If k; = k then the search is
finished, otherwise the computations are continued. If all the keys from k(.S) are less then
k, then the next vertex to be explored is vertex 5,,, in other cases it should be vertex S;_;.
We repeat the procedure with each new vertex we descend into until either an equal key
is found, or a leaf is reached. If key £ is not found in the leaf then the search is finished,
and we return as our result that the key is not found.

The running time of the algorithm is at most the height A of the tree. But h does not
exceed binary logarithm of the number of the tree vertices, since the out-degree of each
vertex is at least 2. This proves

Proposition 4.1 If S(1)-tree T' has n vertices, then the search time is at most logn.
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We will refer to this algorithm as procedure SEARCH(T',k). The result of the proce-
dure is a three-tuple ( True Value, S, k;). TrueValue determines whether key & is found in
T. S is the vertex examined last by the procedure, and k; is a key from S that is greater
than or equal to k. If all keys in S are less than k£ then SEARCH returns a special value
which is denoted by ky+1, where m = |k(S)|. If the key is not in 7" then the point of
insertion is returned, and value of TrueValue indicates that the search failed. This allows
the use of the same procedure for search, insertion, and deletion.

4.2 Insertion

Generally the class of S(1)-trees is not closed under insertions.

Example 4.1 Let the S(1)-tree T of rank p contain a unique key k of weight
w(k) = ¢ > p/2. Try to insert a key [ # k of the same weight u(l) = ¢ to T. It is
impossible, since there does not exist a S(1)-tree consisting of exactly two keys whose
weights exceed half of the tree rank p.

In the same manner it is not possible to construct a correct S(1)-tree of rank p and
order ¢, containing 2¢q keys of weight ¢ > p/q each.

Let fimar(K) = max{u(k) | k € K}. For each key set K we will consider only S(1)-
trees of rank p > 2q a0, (K), where ¢ is the tree order. The insertion algorithm presented
below guaranties that the class of S(1)-trees of that rank is closed under insertions.

Informally the insertion algorithm is as follows.

First it verifies by procedure SEARCH(T',k) whether the given key k is already con-
tained in S(1)-tree T'. If that is the case then insertion is finished. If not, then procedure
SEARCH returns a leaf S = (So, k1,51, ..., kmn, Sm) and a key k; in it, before which key
k must be inserted. Next, k is put to the given place of vertex S. If weight of S is small
enough to contain additional key &, that is, if u(S) 4+ p(k) < p, then insertion is done.
Otherwise weight of the extended vertex S should be greater than p. For restoring the
structure of the S(1)-tree (Definition 2.3 c.4) a balancing of S is needed. The balancing
leads to the special (local) transformations of the initial tree 7. Starting from leaf S
transformations are applied only to those vertices of T' that are on the path from the root
T to S or to their neighbors. Note that generally insertion and balancing of the tree may
increase the tree height by 1.

The main part of the insertion algorithm is a procedure-function BALANCE_L Its
input parameter S is the vertex that must be balanced, and its output is the direct
ancestor of the balanced node.

Balancing of the input node S is performed by relocating the keys, contained in .S and
its neighbors. The neighbors and the parents of S are the local variables of procedure
BALANCE.L

Let L be the left neighbor of S and lkey be the key that separates L and S. If the
left neighbor does not exist then L is defined to be an empty node (denoted L = (), and
lkey by definition is a special key, whose weight is u(lkey) = p+ 1.

Let R be the right neighbor of S and rkey denote their delimiting key. If the right
neighbor of S does not exist, then R = (), and rkey is the special key of weight u(rkey) =
p+1.

Let F' denote the direct ancestor of S, and let 'L and F'R denote the ancestors of S
that contain the delimiting keys lkey and rkey, respectively. If the delimiting keys belong
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to the same vertex F', then F', 'L, and F'R denote one and the same vertex. If S is the
root, then we suppose F'= FL = FR = ().

Thus at the beginning of procedure BALANCEL_I there are six variables defined for
the vertices of the tree.

F = (Fo,fi,F1,...,8, . fo, Fi)
FL = (... lkey,...)
FR = (... ,rkey,...)
S = (So, k1,51, km, Sm)

L = (Lo, La,... .0, Ly)

R = (Ro,r1,Re,...,1:, R,)

Procedure BALANCE._I begins with forming the four subsets of the key set k(.5).

These subsets MLeft, MRight, MDeliml, and MDelimR determine the computational pro-
cess and are defined by the following properties.

1. A key k from k(S) belongs to MLeftiff the sum of the weights of vertex L, delimiting
key lkey, and the keys from k(S) that are left of k£ in S, exceeds p. Conceptually,
keys in  MLeft are those that would not fit if we tried to move as many keys as
possible into L from S.

2. A key k from k(S) belongs to MRight iff the sum of the weights of vertex R,
delimiting key rkey, and the keys from k(S) that are right of k& in S, exceeds p.
Conceptually, keys in  MRight are those that would not fit if we tried to move as
many keys as possible into R from S.

3. A key k from k(S) belongs to MDelimL iff the total weight of the keys left of k& in
S is at most p, and the number of these keys is at least g. Conceptually, a key is in
MDelimL if when resizing S one can select it as the rkey for a validly sized vertex
consisting of the members to the left of it.

4. A key k from k(S) belongs to MDelimR iff the total weight of the keys right of k in
S is at most p, and their number is at least ¢q. Conceptually, a key is in MDelimR
if when resizing S one can select it as the lkey for a validly sized vertex consisting
of the members to the right of it.

Let us define also MDelim = MDelimL N MDelimR. Sets MLeft , and MRight denote
the complements of the respective subsets of K(5).

The following easy statements characterize the intrinsic properties of the sets defined
and guarantee the correctness of algorithm BALANCE._L

5. (VL k€ k(S)(I < k&€ MLeft = k € MLeft)

6. (Vk,r € k(S))(k < r&r € MRight = k € MRight)

7. (Vi k,r € k(S)( < k < r&l e MDelim & r € MDelim = k € MDelim)
8. Statements like 7 are also valid for sets MDeliml and MDelimR .

9. MDelim # 0
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10. MLeftN MRight = ) = MLeft C MRight & MRight C MLeft

11. MDelimL N MLeft = ) = MDelimL C MLeft

12. MDelimR N MRight = () = MDelimR C MRight

13. MDelimL N MLeft = § & MDelimR N MRight = ) = MDelim C MLeft N MRight

Procedure BALANCE_I examines consecutively all possible cases of relationship be-
tween the sets. It distinguishes four (AI, BI, CI, DI) basic cases of sets relationship.
AT examines the case, when a key d can be chosen from node S, such that

1. left neighbor L joined with delimiting key lkey, and the part of S, which is left of
d, forms a correct node of a S(1)-tree, and

2. right neighbor R joined with delimiting key rkey, and the part of S, which is right
of d, forms a correct node of a S(1)-tree.

In this case the initial nodes L, S and R with delimiting keys (key and rkey are replaced
in the tree by two new nodes with delimiting key d.

BI is the case, when a key satisfying both of the two properties of case Al can not be
chosen, but there exists a key d in S that satisfies the first of them. In this case the two
neighbors L and S together with delimiting key [key are replaced by two new vertices
composed of keys contained in L and S, and separated by d.

Case CI is symmetrical to BI.

In case DI vertex S doesn’t have a key satisfying any of the two properties mentioned
above. It means that S can be broken into two well-formed vertices. Here vertex S is
replaced by the two new vertices, and their delimiting key is inserted to the direct ancestor
Fof§S.

Properties 1-13 guarantee that the new nodes, formed by the procedure, will be bal-
anced. Replacing the original delimiting keys lkey and rkey as in cases Al, BI, CI, or
inserting a new delimiting key as in case DI, the algorithm should change also the an-
cestors F'L, F', FR. The renewed vertex F' will be returned as the result of procedure
BALANCE_L

Note that while balancing is not finished, the transformed tree can be not a S(1)-tree.
For example, one of the tree nodes can have weight that exceeds p, or can contain no keys
at all. The latter can happen with node F' when case Al of the procedure is implemented.
Indeed, suppose that initially F' contains a unique key (valid for ¢ = 1), say it is the rkey.
Then after reallocating the keys of vertex S over two neighbors L and R, and removing
the (unique) key from F', it becomes a node, whose key set is empty. But this doesn’t
mean that the renewed node F'is empty, as it has a (unique) descendant.

After finishing the insertion procedure the structure of the S(1)-tree will be fully
recovered.

For describing the algorithms we use the following instrumental procedures and func-
tions.

— Procedure Replace(S, P, () replaces a part of vertex S (of the tree), that coincides with
P, with Q. E.q., Replace(S, (k) , (l)) means substitution of key [ for key k in vertex

S, and Replace(S, S, Q) replaces the whole subtree S of the tree with Q. If @) is an
empty object in Replace(S, P, Q) then it means deletion of part P of vertex S.
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— Function Catenate(...) with variable number of arguments joins all the arguments in
one node. E.g.

Catenate((So, k1, 51) , 1, (Ro,r1, R1))
defines vertex (So, k1, 51, (, Ro, 1, R1).

— Functions LeftOf(S, k) and RightOf(S, k) define two parts of vertex S that are on the
left and on the right, respectively, of key k. E.q., if S = (S, k1, S1, k2, S2), then
LeftOf( S, kz) = (So, k1, S1), and RightOf(S, k) = (52)

— S5* denotes a direct ancestor of vertex S. Thus F' = S* in the procedure.

Procedure BALANCE_I(S)
MLeft:={kek(S)| >  u(D)+ p(lkey) + u(L) > p};
Iek(8),I<k
MRight:={k € k(S)| D> u(r)+ p(rkey) + p(R) > p};
rek(S)kLr

MDelimL = {k € k(S)| 3 u(l) <pk {r € k(S) |k <1} > q);
1ER(S), 1<k

MDelimR :={k € k(S)| > u(r)<plk {I€k(S)|I<k}>q};
rek(S),kLr

MDelim := MDelimL N MDelimR;

MLeft .= k(S)\ MLeft;

MRight := k(S) \ MRight;

Al:  if MLeft N MRight # () then
/** choose element from the intersection **/
d € MLeftN MRight;
Replace(L, L, Catenate(L, lkey, LeftOf(S, d)));
Replace(R, R, Catenate( RightOf( S, d), rkey, R));
All: if FL=F =FR then
Replace(F, (lkey, S, rkey) , (d));
Al2: else if L # F then
Replace(F'L, (lkey) , (d));
Replace(F, (S, rkey, R) , (R));
Al3: else if ' # 'R then
Replace(F R, (rkey) , (d));
Replace(F, (L, lkey,S) ,(L));
fi fi fi
return(F’);
fi

BI:  if MDelimL N MLeft #( then
/*¥** MDelimL N MLeft C MRight ***/
/** choose element from the intersection **/
d € MDelimL N MLeft;
Replace(L, L, Catenate(L, lkey, LeftOf(S, d)));
Replace(S, S, RightOf(S, d));
Replace(F'L, (lkey) , (d));
return(F’);

fi

CI:  if MDelimR N MRight # 0 then
/¥ MDelimR N MRight C M Le ft ***/
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/** choose element from the intersection **/

d € MDelim N MRight;

Replace(R, R, Catenate( RightOf( S, d), rkey, R));
Replace(S, S, LeftOf( S, d));

Replace(F R, (rkey) , (d));

return(F’);

fi

DI: if MDelimN MLeft "\ MRight # ) then
/** choose element from the intersection **/
d € MDelimN MLeft N MRight;
Replace(F, (S) , (LeftOf(S, d), d, RightOf S, d)));
return(F’);
fi
End_of Procedure

Now we are ready to investigate the insertion procedure, called INCLUSION. After
testing (by means of SEARCH) whether the given key should be added to the given
tree, and after inserting of the key to the leaf node, specified by SEARCH, procedure
INCLUSION starts balancing the tree nodes that lay on the path from the tree root to
the enlarged leaf S. The balancing begins from S and proceeds further up to the root
node.

In addition to working on the current level of vertex S and replacing S and its neigh-
bors, the algorithm will also modify the ancestors of S (F, F'L, FR). This can break
to its turn the balance conditions for the ancestors. Namely, the weight of the ancestor,
say F, may exceed p, and then we must use procedure BALANCE_I for balancing F'
The weight of renewed vertex F' may also decrease, compared to its original weight, and
become less than is necessary to satisty together with one of F'’s neighbors the balance
condition 5 of Definition 2.3. In this case we use procedure BALANCE_D.

Precisely, procedure BALANCE_D is used, when either the weight of F' plus the weight
of one of its neighbors together with weight of the delimiting key does not exceed p, or
the number of keys in F' less than ¢. BALANCE_D will be described in the next section.

Computation is stopped after reaching the tree root. Thus the algorithm examines
all the nodes that lay on the path from the tree root to the leaf, containing the new key,
and balances them if necessary. Only these nodes and their neighbors in the tree can be
transformed by the algorithm. The resulting tree would be accessible via variable X.

Procedure INCLUSION(T,k)

(TrueValue, S, k;) := SEARCH(T ,k);

[ S = (A kL, A ki, Ak ALk, A) KRR/

if TrueValue= TRUE then return(7T); fi

Replace(S, (ki) , (k, A, k;));

[ S = (A kL, A ki, AR AR ALk, A) TR/

do
X =5
if u(S) > p then S := BALANCEI(S);
else S := BALANCE_D(S);
while(S # ());
return(X);

End_of Procedure

The following proposition is a consequence of the insertion algorithm, presented above.
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Proposition 4.2 If S(1)-tree T' has n vertices, then time of insertion is O(logn).

4.3 Deletion

Similarly to the insertion, the deletion procedure begins with search. Given a key k and a
S(1)-tree T', procedure SEARCH looks for k in T'. If T" does not contain k, then deletion
is finished. Otherwise SEARCH returns vertex S = (So, k1, 51,..., km, 5m) and a key
k; = k in it that must be deleted.

The case when S is not a leaf can easily be reduced to the case of deletion from leaf.
Indeed, if S is not a leaf, then S; # A. Let’s replace key k; in S by the minimal (according
to the order < on K) key k' from set K(S;). It is clear that k&’ belongs to some leaf S’,
which is the leftmost node of the subtree S. If the replacement of the key k; in S by &’
breaks the balance conditions for S, then they will be restored while balancing the tree.
For finding minimal key k' and leaf S’, containing it, function MinKey(S;) is used.

Now let S be aleaf. The deletion procedure removes the given key from S and proceeds
to balancing the tree.

The main part of the deletion algorithm is a procedure-function BALANCE_D(S) that
balances vertex S and returns the direct ancestor of S. The balancing in this case aims
(as opposed to procedure BALANCEL_I) at reconstructing the structure of the S(1)-tree
when condition 5 of Definition 2.3 does not hold, or the number of keys of the input vertex
is less than ¢ (condition 6). We use the same notations for the neighbors of the input
vertex, their delimiting keys, and the ancestors that were used in procedure BALANCE_L

For simplicity we present here the variant of procedure BALANCE_D, which is valid
for all values of tree order ¢ > 2, but which is not valid for the case of ¢ = 1.

BALANCE.D distinguishes four (AD, BD, CD, DD) basic cases of broken vertex
balance.

AD examines the case, when the total weight of nodes L, S and R with two delimiting
keys lkey and rkey is not greater than p. Here all of the three nodes should be joined
into one new node.

BD is the case, when the total weight of neighboring nodes L and S plus weight of
their delimiting key lkey is not greater than p. In this case the two neighboring nodes are
replaced in the tree by the new one joining vertices L and S.

Case CD is symmetrical to BD.

In case DD, when vertex S can not be catenated with any of its neighbors, and when
the number of its keys is less than ¢, the algorithm joins vertex .S with that of its neighbors,
whose direct ancestor is common with S, and for the new vertex procedure BALANCE_I
is called.

Procedure BALANCE_D(S)
AD:if p(L) + p(lkey) + u(S) + p(rkey) + u(R) < p then
Q := Catenate(L, lkey, S, rkey, R);
if 'L =F =FR then
Replace(F, (L, lkey, S, rkey, R) , (Q));
fi
[ F = (Fy, f1, F1, .., S, o fe, Fi) ¥5F/
if FL#F then /*F=FR*/
Replace(L, L, Q);
Replace(FL, (lkey) , {f2));
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Replace(F, F, RightOf( F, f2));

fi

if £ FR then /*FL=F*/
Replace(R, R, Q);
Replace(F R, (rkey) , (fo—1));
Replace(F, F, LeftOf F, fz—1));

fi

return(F’);

fi

BD: if (L) + p(lkey) + u(S) < p then
Q := Catenate(L, lkey, S);
if 'L =F then
Replace(F, (L, lkey, S) ,(Q));
else /*F=FR*/
Replace(L, L, Q);
Replace(FL, (lkey) , (rkey));
Replace(F, F, RightOf F, rkey));
fi
return(F’);
fi

CD: if pu(S) + p(rkey) + p(R) < p then

Q := Catenate(S, rkey, R);

if ' = FFR then
Replace(F, (S, rkey, R) ,(Q));

else /*FL=F%*/
Replace(R, R, Q);
Replace(F R, (rkey) , (lkey));
Replace(F, F, LeftOf F, lkey));

fi

return(F’);

fi

DD:if F' = () then
if [k(S)| =0 then /*S={(S) */
return(Sp);
else
return(F’);
fi
fi
if |k(S)| < ¢ then
if 'L =F then
Q := Catenate(L, lkey, S);
Replace(F, (L, lkey, S) ,(Q));
else /*F=FR*/
Q := Catenate(S, rkey, R);
Replace(F, (S, rkey, R) , (Q));
fi
return(F);
fi
End_of Procedure

Here is the deletion procedure.

Procedure DELETION(T k)
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(TrueValue, S, k;) :== SEARCH(T, k);
/*** S = <S(), kl,Sl, ey Si—la l{fi, Si; .. .,]{fm, Sm> ***/
if TrueValue = FALSE then return(7); fi
if So #A then /* Sisnot aleaf */
(S' k") := MinKey(S;);
Replace(S, (k) , (k'));
S=25
k=k,
fi
[ S = (A ki, A ki, AR AR ALk, A) R/
Replace(S, (A, k, A), (A));
do
X =5
if u(S) >p then S:
else S
while(S # ()
return(X);
End_of Procedure

BALANCE_(S);
BALANCE_D(S); £

The following proposition is a consequence of the deletion algorithm.
Proposition 4.3 If S(1)-tree T has n vertices, then time of deletion is O(logn).
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