
www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  27

FILE SYSTEMS AND STORAGE

Scaling Namespace Operations with
Giraffa File System
K O N S T A N T I N V . S H V A C H K O A N D Y U X I A N G (C H R I S) C H E N

HDFS clusters rely on a single NameNode, the master, as its metadata
service. Single master design of HDFS is known to be a limiting
factor for potential growth of the file system in its size and perfor-

mance. Project Giraffa replaces the single master of HDFS with a dynami-
cally distributed namespace service, thus overcoming scalability limits of
HDFS while remaining fully compatible with it. We focus on the perfor-
mance of namespace operations and present a benchmark that demonstrates
that Giraffa can linearly scale the throughput of metadata operation by sim-
ply adding more servers to store the file-system namespace.

Apache Hadoop is a system for distributed storage and computation for big data problems.
As members of the Hadoop Development team at LinkedIn, it is our daily job to monitor the
condition of our clusters, fix problems, and optimize their performance. The most troubling
problems are those that result in a cluster-wide crisis.

One day, a user complained that his job was running unusually slowly and not progressing.
We thought it could be a problem of the particular job. But with more similar reports coming
in, we realized that the cluster became stagnant for most of the jobs assigned to it. Eventu-
ally we noticed that the NameNode was unresponsive, running at 100% CPU. Further drill-
ing into HDFS audit logs, we identified one job that was producing hundreds of thousands
of namespace operations per second, saturating the NameNode and degrading its perfor-
mance. The majority of these operations were read requests such as listStatus, getFileInfo,
getBlockLocations.

We call the above scenario the “bad client” problem, which means a single “bad” job can
make the whole cluster unavailable for everybody. The root cause of this problem is the single
master architecture of HDFS, where the performance of a single NameNode, the single mas-
ter, can constrain the performance of the entire cluster.

Scaling file system metadata along with its data is our primary motivation for building
the Giraffa file system. We show that Giraffa metadata operations scale linearly and thus
can prevent the bad client problem. See [4] for different aspects of scalability limitations of
HDFS architecture [6].

Giraffa Overview
Giraffa [5] is a distributed, highly scalable file system that aims to:

1.	 Support millions of concurrent clients

2.	 Store trillions of objects

3.	 Maintain exabyte total storage capacity

Giraffa is intended to scale both the data storage and its metadata. Giraffa keeps its meta-
data—directories, files, and blocks—in a distributed key-value store, currently Apache
HBase, as a single table distributed across multiple servers, while file data are stored in block

Konstantin V. Shvachko is an
expert in big data technologies,
file systems, and storage
solutions. He specializes in
efficient data structures and

algorithms for large-scale distributed storage
systems. Konstantin is known as an open
source software developer, author, inventor,
and entrepreneur. He is currently a part of the
Hadoop team at LinkedIn.
kshvachko@linkedin.com

Yuxiang Chen is a graduate
student in the School of
Computer Science, Carnegie
Mellon University. In summer
2016 he worked as an intern

with the Hadoop Development team at
LinkedIn. His research interests include cloud
computing and distributed systems.
yuxiang1@andrew.cmu.edu

28    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Scaling Namespace Operations with Giraffa File System

files located on HDFS DataNodes. In other words, we still store
all the data in DataNodes as Hadoop does. However, we save all
the information that is stored in the NameNode in Hadoop to
an HBase table in Giraffa. This architecture makes Giraffa a
drop-in (no data copy) replacement for HDFS. Figure 1 shows the
high-level architecture of Giraffa.

In Giraffa the file system metadata is served by the Namespace
Service, which is composed of a single HBase table called
Namespace. The Namespace table stores records corresponding
to files and directories. Each record has a unique key, identifying
the file or the directory, and contains the following attributes:
local name, owner, group, permissions, access time, modification
time, block size, replication, length, and a directory flag. When
you need to read a file, you get the file’s list of blocks and their
locations, so your application can read the data from the respec-
tive DataNodes. When you write to a file, Giraffa allocates a
block using its BlockManager. The client then writes data to the
designated DataNodes.

BlockManager is another service that is used to maintain the
flat namespace of blocks. The BlockManager is responsible for:

1.	 New block allocation

2.	 Scheduling block replication and deletion

3.	 DataNode management: process DataNode block reports,
heartbeats, detect lost nodes

HBase automatically partitions its tables, and this allows
Giraffa to dynamically partition its Namespace. That is, file and
directory metadata—table rows—can automatically migrate
between nodes based on nodes’ utilization and load-balancing
requirements. Since metadata is distributed across multiple

nodes, this allows the number of files in the file system to
increase and ensures that Giraffa is able to deal with trillions of
files representing as much as 1000 PB of data on a single cluster.

Row keys identify files and directories as rows in the Namespace
table, and they also define the sorting of the rows in the table.
Thus, keys play an important role in Namespace partitioning.
Row-key definition is based on the locality requirement and is
chosen during file-system formatting.

Currently the row key is implemented as a byte array represent-
ing the full path to a file in the namespace tree. For example, file
/user/jsmith/job.xml is identified by the row key, which is a
byte representation of the string “/user/jsmith/job.xml”. Lexico-
graphic ordering of such keys guarantees locality of reference—
that is, the children of the same directory fall into the same
table partition, a region, most of the time. In the future we plan
to define the row keys based on unique immutable INode IDs,
which include selfID and two nearest parent IDs. This way, we
still guarantee the locality of reference but also allow in-place
renames—that is, if a file name changes, it remains in the same
region because name changes do not affect row key values.

Giraffa is still in an experimental phase. The problems remain-
ing to be addressed include:

1.	 Full set of HDFS functionality

2.	 INode ID-based keys to allow in-place atomic rename

3.	 Distributed block management

4.	 Short-circuit HBase metadata into itself

5.	 HBase scalability: single HMaster, region redundancy

Setting Up a Giraffa Cluster
We’ve used Giraffa on Java 8 without issues, but it also works
with Java 7. We need Gradle 2.5 to build Giraffa sources. Similar
to Hadoop, Giraffa uses Google Protocol Buffers version 2.5.0.
Giraffa currently depends on hbase-1.0.1 and hadoop-2.5.1.

Although the Giraffa Wiki page on GitHub has instructions for
setting up Giraffa in standalone mode, we will show you how to
install Giraffa on a real cluster. Our cluster consisted of 11 physi-
cal servers (node-001 to node-011). Below are the step-by-step
instructions on how to set up the cluster. One may consider writ-
ing a batch of scripts to automate the installation process.

Hadoop 2.5.1 Setup
Set up Hadoop normally if you haven’t already, following Cluster
Setup instructions [1]. HDFS cluster status can be checked via
the NameNode Web UI at http://node-001:50070. In our case,
node-001 runs the NameNode process, while the other 10 serv-
ers node-002–node-011 run DataNodes.

Figure 1: Giraffa Namespace Agent obtains metadata from Giraffa
Namespace Service and streams data to or from HDFS DataNodes, while
Giraffa Block Manager maintains all blocks.

www.usenix.org	   S U M M ER 20 17  VO L . 42 , N O. 2  29

FILE SYSTEMS AND STORAGE
Scaling Namespace Operations with Giraffa File System

HBase 1.0.1 Setup
1.	 Follow the official Apache HBase Reference guide [2] to

configure and set up HBase cluster.

2.	 Start HBase. In our cluster, node-001 hosts HMaster and
HQuorumPeer processes, and the remaining machines host
HRegionServer process. The status of the HBase cluster can
be checked on the HMaster Web UI at http://node-001:16010.

3.	 Stop HDFS and HBase after testing.

Giraffa Setup
1.	 Download and build Giraffa according to [3].

2.	 Copy giraffa-standalone-0.4-SNAPSHOT.tgz to all nodes,
and change the configuration according to [3].

3.	 Start and format Giraffa using giraffa format command.
The script that starts Giraffa will also bring up Hadoop and
HBase.

After completing these steps, you should be able to run file
system operations on Giraffa. Here are some examples of Giraffa
CLI commands.

Get listing of the Giraffa root directory:

bin/giraffa fs –ls /

Create a new directory:

bin/giraffa fs -mkdir testdir

YARN Setup
1.	 Configure YARN according to the official Apache Hadoop

tutorial [1].

2.	 Use Giraffa commands to start YARN daemons: the
ResourceManager on node-001, and NodeManager processes
on the rest of the nodes:
bin/yarn-giraffa-daemon.sh start resourcemanager

bin/yarn-giraffa-daemon.sh start nodemanager

The cluster setup is now complete.

TeraSort is an example of a YARN application. By default it
starts small MapReduce jobs, which will test the entire setup.
Note that in this case all data is stored and processed on the
Giraffa file system rather than on HDFS.

1.	 Run TeraGen:
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar

teragen 10000000 /teragen

2.	 Run TeraSort:
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar

terasort /teragen /terasort

3.	 Run TeraValidate:
bin/yarn-giraffa jar $HADOOP_HOME/share/hadoop

/mapreduce/hadoop-mapreduce-examples-2.5.1.jar

teravalidate /terasort /teravalidate

The Benchmarks
In order to show that Giraffa scales linearly with the number of
region servers, we built a benchmark. In this benchmark, we first
create a number of files, and then run a MapReduce job, where
each mapper calls listStatus for those files.

Suppose we have m map tasks running in parallel, and each map
task performs listStatus for n files. Then the result we want to
output is (m * n / t), where t is the time of the mapping phase.
YARN does not guarantee that all tasks start at the same time.
In order to synchronize our m map tasks running in parallel, we
set a start time t1. All map tasks will wait until time point t1
before running the listStatus operations. That way we can guar-
antee that the mappers hit the Namespace Service all at once,
providing maximum workload on the service. Finally, we record
time t2 when the last map task stops, and measure the running
time for all mappers as t = t2 – t1.

This benchmark gives us the number of read operations that
Giraffa can handle per second, which is an important metric of
the cluster performance.

The configuration of the experiment is as follows:

We set up a cluster with 11 nodes. node-001 hosts master
processes: NameNode, HMaster, ResourceManager. node-002–
node-011 host the slave processes: DataNode, HRegion, Node-
Manager. We managed to run 220 map tasks simultaneously on
our cluster, and required each of them to perform listStatus for
10,000 files. We collected the running time and repeated this
experiment several times to get rid of the soft bias.

We chose the number of map tasks to run (220) based on the
capacity of the cluster. YARN as a resource manager allocates
containers, each of which runs a single task and defines how
much of execution resources, RAM and CPU (vCores), to be dedi-
cated to a specific task. Thus, the cluster capacity is determined
by the total amount of RAM and the total number of vCores.
Our goal was to fully utilize the cluster without overutilizing it,
so that all mappers ran simultaneously rather than in “waves.”

30    S U M M ER 20 17  VO L . 42 , N O. 2 	 www.usenix.org

FILE SYSTEMS AND STORAGE
Scaling Namespace Operations with Giraffa File System

From these tests, we can see that the read performance of
Giraffa scales linearly with the number of region servers. The
write performance was partly addressed in [7]. It shows that the
mkdir operation scales linearly. We expect that some operations
like file create or delete will scale linearly as well, but some
like addBlock will not due to limitations of the current Giraffa
implementation, something yet to be fixed.

Conclusion
We showed that the Giraffa file system could linearly scale
metadata operation for read requests by simply adding more
servers to store the file-system namespace.

Authors of [7] came to the same conclusion as they benchmarked
Giraffa along with two other systems, ShardFS and IndexFS,
on a variety of metadata workloads. It shows that Giraffa scales
linearly in throughput as more servers are dynamically added to
the system for most of the workloads.

In our cluster, we had a total of 220 GB of RAM and 320 vCores
available for containers. Each task requires at least 1 GB of
memory and 1 vCore. We therefore decided to set the number of
map tasks to be 220, which satisfies the single wave requirement
without affecting the performance of the cluster.

We started the Giraffa benchmark with a single region server
serving the entire Namespace table. Then we used the HBase
split command to dynamically partition the table into two
regions served by two different region servers. Dynamically here
means that we did not need to copy file data or restart the cluster
for repartitioning. Then we similarly split the table into four and
eight regions and made sure that each of them was assigned to a
different region server.

In order to compare the performance of Giraffa and HDFS, we
ran the same benchmark on an HDFS cluster using the same
hardware. The main difference is that the Hadoop cluster does
not need HMaster and HRegion processes. We stopped the
Giraffa cluster, set up HDFS, and configured and started YARN
with HDFS according to [1].

For Hadoop we also ran 220 parallel mappers with each of
them performing listStatus for 10,000 files. Figure 2 shows the
benchmark results.

The x-axis represents the number of region servers serving
Giraffa namespace, and the y-axis represents the number of read
operations per second that the file system processed. Since in
our HDFS cluster we had only one NameNode, the number of
read operations per second does not change, and the dashed line
serves as the baseline. The solid line represents the throughput
of Giraffa. It shows linear growth of read operations per second
with the number of region servers. The benchmark is limited to
eight region servers because of the cluster size limitations.

References
[1] Apache Hadoop Cluster Setup: https://hadoop.apache​
.org/docs/current/hadoop-project-dist/hadoop-common​
/ClusterSetup.html.

[2] Apache HBase Configuration: https://hbase.apache.org/0.94​
/book/configuration.html.

[3] How to Set up, Build, and Use Giraffa: https://github.com​
/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use​
-Giraffa.

[4] K. V. Shvachko, “HDFS Scalability: The Limits to Growth,”
;login:, vol. 35, no. 2 (April 2010): https://www.usenix.org​
/legacy/publications/login/2010-04/openpdfs/shvachko.pdf.

[5] K. V. Shvachko, P. Jeliazkov, “Dynamic Namespace Par-
titioning with Giraffa File System,” Hadoop Summit 2012:
http://lanyrd.com/2012/hadoop-summit/stttw/.

[6] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The Hadoop
Distributed File System,” 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), 2010.

[7] L. Xiao, K. Ren, Q. Zheng, G. A. Gibson, “ShardFS vs.
IndexFS: Replication vs. Caching Strategies for Distributed
Metadata Management in Cloud Storage Systems,” Sixth
ACM Symposium on Cloud Computing, 2015.

Figure 2: Giraffa read performance scales linearly with number of servers
compared to the single NameNode.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hbase.apache.org/0.94/book/configuration.html
https://hbase.apache.org/0.94/book/configuration.html
https://github.com/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use-Giraffa
https://github.com/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use-Giraffa
https://github.com/GiraffaFS/giraffa/wiki/How-to-Setup,-Build,-and-Use-Giraffa
https://www.usenix.org/legacy/publications/login/2010-04/openpdfs/shvachko.pdf
https://www.usenix.org/legacy/publications/login/2010-04/openpdfs/shvachko.pdf
http://lanyrd.com/2012/hadoop-summit/stttw/

