HDFES Design Principles

The Scale-out-Ability of Distributed Storage

SVForum
Software Architecture & Platform SIG

Konstantin V. Shvachko

May 23, 2012

Big Data

» Computations that need the power of many computers
% Large datasets: hundreds of TBs, tens of PBs
+* Or use of thousands of CPUs in parallel
“ Or both

» Big Data management, storage and analytics
% Cluster as a computer

What is Apache Hadoop

» Hadoop is an ecosystem of tools for processing
“Big Data”

» Hadoop is an open source project

e Apache Software Foundation
http://www.apache.org/

The Hadoop Family

HDFS Distributed file system
MapReduce Distributed computation
Zookeeper Distributed coordination
HBase Column store

Pig Dataflow language, SQL
Hive Data warehouse, SQL
Oozie Complex job workflow

BigTop

4

Packaging and testing

Hadoop: Architecture Principles

» Linear scalability: more nodes can do more work within the same time
% Linear on data size:
“* Linear on compute resources:

» Move computation to data
% Minimize expensive data transfers
% Data are large, programs are small

» Reliability and Availability: Failures are common
% 1 drive fails every 3 years => Probability of failing today 1/1000
“* How many drives per day fail on 1000 node cluster with 10 drives per node?

» Simple computational model
“ hides complexity in efficient execution framework

» Sequential data processing (avoid random reads)

Hadoop Core

» A reliable, scalable, high performance distributed computing system

» The Hadoop Distributed File System (HDFS)

** Reliable storage layer
“* With more sophisticated layers on top

» MapReduce — distributed computation framework

» Hadoop scales computation capacity, storage capacity, and I/O bandwidth
by adding commodity servers.

» Divide-and-conquer using lots of commodity hardware

Hadoop Cluster Components

» HDFS — a distributed file system
“» NameNode — namespace and block management
+» DataNodes — block replica container

» MapReduce — a framework for distributed computations
“* JobTracker — job scheduling, resource management, lifecycle coordination
% TaskTracker — task execution module

m JobTracker

v
'\\ N

~~i_| TaskTracker | !
1 : N

N
DataNode

HDES
THE DESIGN PRINCIPLES

8

Hadoop Distributed File System

» The name space is a hierarchy of files and directories
» Files are divided into blocks (typically 128 MB)

» Namespace (metadata) is decoupled from data
“ Lots of fast namespace operations, not slowed down by
+ Data streaming

» Single NameNode keeps the entire name space in RAM
» DataNodes store block replicas as files on local drives

» Blocks are replicated on 3 DataNodes for redundancy and availability

NameNode Transient State

NameNode RAM

Hierarchical
Namespace

P Block

Manager
blk_234_002 dn-11 dn-12 dn-13
o[QEZETIERY dn-101 dn-102 dn-103

* Heartbeat e Heartbeat e Heartbeat DataNodes
e Disk Used e Disk Used e Disk Used

¢ Disk Free ¢ Disk Free ¢ Disk Free
e xCeivers e xCeivers e xCeivers

NameNode Persistent State

» The durability of the name space is maintained by a
write-ahead journal and checkpoints

*+ Journal transactions are persisted into edits file before replying to the client

“» Checkpoints are periodically written to fsimage file
Handled by Checkpointer, SecondaryNameNode

+* Block locations discovered from DataNodes during startup via block reports.
Not persisted on NameNode

» Types of persistent storage devices
% Local hard drive
“* Remote drive or NFS filer
“» BackupNode

» Multiple storage directories
% Two on local drives, and one remote server, typically NFS filer

11

DataNodes

» DataNodes register with the NameNode, and provide periodic block reports
that list the block replicas on hand

** block report contains block id, generation stamp and length for each replica
» DataNodes send heartbeats to the NameNode to confirm its alive: 3 sec

» If no heartbeat is received during a 10-minute interval, the node is
presumed to be lost, and the replicas hosted by that node to be unavailable

“* NameNode schedules re-replication of lost replicas

» Heartbeat responses give instructions for managing replicas
“* Replicate blocks to other nodes
» Remove local block replicas
% Re-register or shut down the node
% Send an urgent block report

L)

*

L)

L)

*

12

HDFS Client

» Supports conventional file system operation
“ Create, read, write, delete files
** Create, delete directories
*» Rename files and directories

» Permissions
» Modification and access times for files
» Quotas: 1) namespace, 2) disk space

» Per-file, when created
“* Replication factor — can be changed later
*» Block size — can not be reset after creation

» Block replica locations are exposed to external applications

13

HDFS Read

» To read a block, the client requests the list of replica locations from the
NameNode

» Then pulling data from a replica on one of the DataNodes

get Block Locations

14

HDFS Read

» Open file returns DFSInputStream

» DFSInputStream for a current block fetches replica locations from
NameNode

% 10 atatime
+* Client caches replica locations

» Replica Locations are sorted by their proximity to the client
“* Choose first location

» Open a socket stream to chosen DataNode, read bytes from the stream

» If fails add to dead DataNodes
+»» Choose the next DataNode in the list

» Retry 2 times

Replica Location Awareness

» MapReduce schedules a task assigned to process block B to a DataNode
serving a replica of B

» Local access to data

NameNode JobTracker
4 K\ '\\

|
|
|
|

16

i e i P T
Tasle,’acker \'\I'askTracker TaskTracker ,
L
T . \ Lo N .
DataNode DataNode | DataNode |
Block D o— _— P~

HDFS Write

» To write a block of a file, the client requests a list of candidate DataNodes
from the NameNode, and organizes a write pipeline.

__

addBlock (src) Cluster

: NameNode
: write

=== 2)

DataNode

—— I

i
Data C—_&j li\ Blocks
|

HDFS Client

Pipeline DataNode Received

C"—ﬂ_ﬁ

DataNode

__

17

HDFS Write

» Create file in the namespace

» Call addBlock() to get next block
“* NN returns prospective replica locations sorted by proximity to the client
+* Client creates a pipeline for streaming data to DataNodes

» HDFS client writes into internal buffer and forms a queue of Packets

» DataStreamer sends a packet to DN1 as it becomes available
“» DN1 streams to DN2 the same way, and so on

» If one node fails the pipeline is recreated with remaining nodes
% Until at least one node remains
% Replication is handled later by the NameNode

18

Write Leases

» HDFS implements a single-writer, multiple-reader model.

» HDFS client maintains a lease on files it opened for write
% Only one client can hold a lease on a single file
+* Client periodically renews the lease by sending heartbeats to the NameNode

» Lease expiration:

“ Until soft limit expires client has exclusive access to the file
% After soft l[imit (10 min): any client can reclaim the lease
“ After hard limit (1 hour): NameNode mandatory closes the file, revokes the lease

» Writer's lease does not prevent other clients from reading the file

19

Append to a File

» Original implementation supported write-once semantics
» After the file is closed, the bytes written cannot be altered or removed

» Now files can be modified by reopening for append

» Block madifications during appends use the copy-on-write technique
% Last block is copied into temp location and modified
“» When “full” it is copied into its permanent location

» HDFS provides consistent visibility of data for readers before file is closed

» hflush operation provides the visibility guarantee
% On hflush current packet is immediately pushed to the pipeline
“ hflush waits until all DataNodes successfully receive the packet

» hsync also guarantees the data is persisted to local disks on DataNodes

20

Block Placement Policy

» Cluster topology :ﬁ/

++ Hierarchal grouping of nodes according to %
. . — Rack 0 — Rack 1
+» network distance

> Default block placement policy - a tradeoff

*» between minimizing the write cost,
<+ and maximizing data reliability, availability and aggregate read bandwidth

1. First replica on the local to the writer node
2. Second and the Third replicas on two different nodes in a different rack

3. the Rest are placed on random nodes with restrictions
% no more than one replica of the same block is placed at one node and
% no more than two replicas are placed in the same rack (if there is enough racks)

» HDFS provides a configurable block placement policy interface
% experimental

21

System Integrity

» Namespace ID

%+ a unique cluster id common for cluster components (NN and DNSs)
“» Namespace ID assigned to the file system at format time
“* Prevents DNs from other clusters join this cluster

» Storage ID

<+ DataNode persistently stores its unique (per cluster) Storage ID
% makes DN recognizable even if it is restarted with a different IP address or port
%+ assigned to the DataNode when it registers with the NameNode for the first time

» Software Version (build version)
+ Different software versions of NN and DN are incompatible
++ Starting from Hadoop-2: version compatibility for rolling upgrades

» Data integrity via Block Checksums

22

Cluster Startup

» NameNode startup

“ Read image, replay journal, write new image and empty journal
*» Enter SafeMode

» DataNode startup
“ Handshake: check Namespace ID and Software Version
“* Registration: NameNode records Storage ID and address of DN
% Send initial block report

» SafeMode — read-only mode for NameNode
+* Disallows maodifications of the namespace
+* Disallows block replication or deletion
%+ Prevents unnecessary block replications until the majority of blocks are reported
< Minimally replicated blocks
< SafeMode threshold, extension
% Manual SafeMode during unforeseen circumstances

23

Block Management

» Ensure that each block always has the intended number of replicas
+» Conform with block placement policy (BPP)
“* Replication is updated when a block report is received

» Over-replicated blocks: choose replica to remove
++ Balance storage utilization across nodes without reducing the block’s availability
“ Try not to reduce the number of racks that host replicas
“* Remove replica from DataNode with longest heartbeat or least available space

» Under-replicated blocks: place into the replication priority queue

% Less replicas means higher in the queue
“* Minimize cost of replica creation but concur with BPP

» Mis-replicated block, not to BPP
» Missing block: nothing to do

» Corrupt block: try to replicate good replicas, keep corrupt replicas as is

24

HDFS Snapshots: Software Upgrades

» Shapshots prevent from data corruption/loss during software upgrades
+ allow to rollback if software upgrades go bad

» Layout Version
+* identifies the data representation formats
 persistently stored in the NN’s and the DNs’ storage directories

» NameNode image snapshot
* Start hadoop namenode —-upgrade
“ Read checkpoint image and journal based on persisted Layout Version
o New software can always read old layouts
% Rename current storage directory to previous
% Save image into new current

» DataNode upgrades
“* Follow NameNode instructions to upgrade
% Create a new storage directory and hard link existing block files into it

25

Administration

» Fsck verifies

“» Missing blocks, block replication per file
++ Block placement policy
“* Reporting tool, does not fix problems

» Decommission

% Safe removal of a DataNode from the cluster
“» Guarantees replication of blocks to other nodes from the one being removed

» Balancer

“* Rebalancing of used disk space when new empty nodes are added to the cluster
“+ Even distribution of used space between DataNodes

» Block Scanner
+* Block checksums provide data integrity

“» Readers verify checksums on the client and report errors to the NameNode
+* Other blocks periodically verified by the scanner

26

Hadoop Size

» Y! cluster 2010
+» 70 million files, 80 million blocks
“* 15 PB capacity
“* 4000+ nodes. 24,000 clients
%+ 50 GB heap for NN

» Data warehouse Hadoop cluster at Facebook 2010
<+ 55 million files, 80 million blocks. Estimate 200 million objects (files + blocks)
% 2000 nodes. 21 PB capacity, 30,000 clients
%+ 108 GB heap for NN should allow for 400 million objects

» Analytics Cluster at eBay (Ares)
77 million files, 85 million blocks
% 1000 nodes: 24 TB of local disk storage, 72 GB of RAM, and a 12-core CPU
% Cluster capacity 19 PB raw disk space
% Runs upto 38,000 MapReduce tasks simultaneously

27

Benchmarks

» DFSIO Throughput Read Write Append
MB/sec
Hadoop-0.22 100 84 83
Hadoop-1.* 96 66 n/a

» Observed on busy cluster
% Read: 1.02 MB/s
“* Write: 1.09 MB/s

» TeraSort (“Very carefully tuned user application”)

Bytes Nodes Maps Reduces Time HDFS 1/O Bytes/s
(TB) Aggregate Per Node
(GB/s) (MB/s)

1 1460 8000 2700 62 s 32 22.1

1000 3558 80,000 20,000 58,500s 34.2 9.35

28

WHAT IS NEXT

29

The Future: Hadoop 2

» HDFS Federation

“* Independent NameNodes sharing a common pool of DataNodes
** Cluster is a family of volumes with shared block storage layer

% User sees volumes as isolated file systems

“* ViewFS: the client-side mount table

“+ Federated approach provides a static partitioning of the federated namespace

L)

L0

>

» High Availability for NameNode

» Next Generation MapReduce
“» Separation of JobTracker functions
1. Job scheduling and resource allocation
o Fundamentally centralized
2. Job monitoring and job life-cycle coordination
o Delegate coordination of different jobs to other nodes
> Dynamic partitioning of cluster resources: no fixed slots

*

D)

)

30

very old versions of Hadoop

l

Genealogy of Elephants hadoop 0.18
A
hadoop 0.19
A
hadoop 0.20
/ | ¥
hadoop 0.20.2 hadoop 0.21 hadoop 0.20.1

hadoop 0.20.200 (Y! security)
hadoop 0.20.203

hadoop 0.20.1 (IBM)

hadoop 0.20.1 (Greenplum)

K

hadoop 0.20.203 (MS Azure) hadoop 0.20.205
hadoop 1.0.0 hadoop 0.22
" hadoop022.1 - hadoop 0.23 |
........ & AL Ta

. hadoop20077? hadoop 0.24 (trunk) /. hadoop300277 '+ ' CDH4

https://blogs.apache.org/bigtop/entry/all_you_wanted_to_know
https://blogs.apache.org/bigtop/entry/all_you_wanted_to_know

Major Hadoop Versions

» Hadoop 1.0.3 (security branch) 2012-05-16
*» Security, HBase support, No append

% Stable

» Hadoop 0.22.0 2011-12-10
“* Full append support, symlinks, BackupNode, Disk-fail-in-place, File concatenation
“ Beta

» Hadoop 2 2012-05-23

++ Fedaration — static partitioning of HDFS namespace
% Yarn — new implementation of MapReduce

“* HA (manual failover)

% Alpha

» No stable unifying release, containing all the good features

32

AVAILABILITY

33

Why High Availability is Important?

»Nothing Is perfect:
“»*Applications and servers crash
“*Avoid downtime

» Conventional for traditional RDB and
enterprise storage systems

»Industry standard requirement

34

35

And Why it is Not?

» Scheduled downtime dominates Unscheduled
+*OS maintenance
“*Configuration changes

» Other reasons for Unscheduled Downtime

%60 incidents in 500 days on 30,000 nodes
24 Full GC — the majority
“*System bugs / Bad application / Insufficient resources

“+“Data Availability and Durability with HDFS”
R. J. Chansler USENIX ;login: February, 2012

»Pretty reliable

NameNode HA Challenge

» Naive Approach
+» Start new NameNode on the spare host, when the primary NameNode dies:
*» Use LinuxHA or VCS for failover

e

» NameNode startup may take up to 1 hour
“* Read the Namespace image and the Journal edits: 20 min
“ Wait for block reports from DataNodes (SafeMode): 30 min

36

Failover Classification

Manual-Cold (or no-HA) — an operator manually shuts down and restarts
the cluster when the active NameNode fails.

Automatic-Cold — save the namespace image and the journal into a
shared storage device, and use standard HA software for failover.
'It can take up to an hour to restart the NameNode.

Manual-Hot — the entire file system metadata is fully synchronized on both
active and standby nodes, operator manually issues a command to failover
to the standby node when active fails.

Automatic-Hot — the real HA, provides fast and completely automated
failover to the hot standby.

= Warm HA — BackupNode maintains up to date namespace fully
synchronized with the active NameNode. BN rediscovers location from
DataNode block reports during failover. May take 20-30 minutes.

37

HA: State of the Art

» Manual failover is a routine maintenance procedure: Hadoop Wiki

» Automatic-Cold HA first implemented at ContextWeb
uses DRBD for mirroring local disk drives between two nodes and Linux-HA
as the failover engine

» AvatarNode from Facebook - a manual-hot HA solution.
Use for planned NameNode software upgrades without down time

» Five proprietary installations running hot HA

» Designs:
“ HDFS-1623. High Availability Framework for HDFS NN
“» HDFS-2064. Warm HA NameNode going Hot
% HDFS-2124. NameNode HA using BackupNode as Hot Standby

» Current implementation Hadoop-2
% Manual failover with shared NFS storage
% In progress: no NFS dependency, automatic failover based on internal algorithms

38

http://wiki.apache.org/hadoop/NameNodeFailover
http://files.meetup.com/1228907/Hadoop Namenode High Availability.pptx
http://files.meetup.com/1228907/Hadoop Namenode High Availability.pptx
http://files.meetup.com/1228907/Hadoop Namenode High Availability.pptx
http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html

Automatic-Hot HA: the Minimalistic Approach

» Standard HA software
% LinuxHA, VCS, Keepalived

» StandbyNode

“* keeps the up-to-date image of the namespace via Journal stream
++ available for read-only access
% can become active NN

» LoadReplicator
<+ DataNodes send heartbeats / reports to both NameNode and StandbyNode

» VIPs are assigned to the cluster nodes by their role:
“* NameNode — nn.vip.host.com
% StandbyNode — sbn.vip.host.com

> |P-failover

» Primary node is always the one that has the NameNode VIP

» Rely on proven HA software

39

SCALABILITY

40

Limitations of the Implementation

» Single master architecture: a constraining resource

» Limit to the number of namespace objects
“» A NameNode object (file or block) requires < 200 bytes in RAM
+* Block to file ratio is shrinking: 2 —> 1.5 -> 1.2
% 64 GB of RAM yields: 100 million files; 200 million blocks
% Referencing 20 PB of data with and block-to-file ratio 1.5 and replication 3

» Limits for linear performance growth
“ linear increase in # of workers puts a higher workload on the single NameNode
% Single NameNode can be saturated by a handful of clients

» Hadoop MapReduce framework reached its scalability limit at 40,000 clients
++ Corresponds to a 4,000-node cluster with 10 MapReduce slots

» "HDFS Scalability: The limits to growth” USENIX ;login: 2010

41

http://www.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf

From Horizontal to Vertical Scaling

» Horizontal scaling is limited by single-master-architecture

» Vertical scaling leads to cluster size shrinking
“» While Storage capacities, Compute power, and Cost remain constant

5000
4000
3000
2000
1000

0

42

Hadoop reached horizontal scalability limit

m 2008 Yahoo
4000 node cluster

2010 Facebook
2000 nodes

2011 eBay
1000 nodes

m 2013 Cluster of
500 nodes

Namespace Partitioning

» Static: Federation

<*Directory sub-trees are statically distributed
between separate instances of FSs

“*Relocating sub-trees without copying is
challenging

«*Scale x10: billions of files

» Dynamic

<*Files, directory sub-trees can move automatically
between nodes based on their utilization or load
balancing requirements

“*Files can be relocated without copying data blocks
*»Scale x100: 100s of billion of files

» Orthogonal independent approaches.
“*Federation of distributed namespaces is possible

43

Distributed Metadata: Known Solutions

» Ceph
+» Metadata stored on OSD
*»MDS cache metadata
*» Dynamic Metadata Partitioning

» GFS Colossus: from Google S. Quinlan and J.Dean
+ 100 million files per metadata server
**Hundreds of servers

» Lustre
*» Plans to release clustered namespace
+» Code ready

» VoldFS, CassFS, MySQL — prototypes

a4

HBase Overview

» Distributed table storage system

» Tables: big, sparse, loosely structured
+» Collection of rows
*»Has arbitrary number of columns

» Table are Horizontally partitioned into regions. Dynamic partitioning

» Columns can be grouped into Column families
+» Vertical partition of the table

» Distributed cache: Regions loaded into RAM on cluster nodes

» Timestamp: user-defined cell versioning, 3-rd dimension.
*» Cell id: <row_key, column_key, timestamp>

45

Giraffa File System

» Goal: build from existing building blocks
“* minimize changes to existing components

» HDFS + HBase = Giraffa

» Store metadata in HBase table
“ Dynamic table partitioning into regions
+»» Cashed in RAM for fast access

» Store data in blocks on HDFS DataNodes
+ Efficient data streaming

» Use NameNodes as block managers
% Flat namespace of block IDs — easy to partition
%+ Handle communication with DataNodes
%+ Perform block replication

46

Giraffa Architecture

» Dynamic namespace table partitioning with HBase

» Data streaming to HDFS

Giraffa Aliss

Namespace
path, attrs, block[], DN[][], BM-node

~ Block Management Agent

2 2 R Block Management Layer

a7

Giraffa Facts

» HBase * HDFS = high scalability
*» More data & more files

» High Availability
% no SPOF, load balancing

» Single cluster
“* no management overhead for operating more node

Space 25 PB 120 PB 1 EB =1000 PB
Files + blocks 200 million 1 billion 100 hillion
Concurrent Clients 40,000 100,000 1 million

48

Current State

»Design stage

»One node cluster running

@ Terminal

g @ W Br0-Q & W G- ¥ P48 1 Llv Glv ¥ P = 1]
12 Package Explorer 52 " T Hierarchy Ju Junit B % ~=0o|p 2) BlockManagementAgent 7 Giraffaclientjova & buildxml |™ g

private HBaseAdmin hbAdmin;

* [§) DirectoryTable java
private HTable nsTable;

»] FullPathRowkey java
*) GiraffaConfiguration java private HashMap<String, RowKey> cache = new HashMap<String, RowKey>();
> (i) GiraffaFilesystem java
. private static final Log L0G =

@ INode java LogFactory. getLog(NamespaceAgent . class . gethame ()) ;
» i) NamespaceAgent java
» @ RowKeyjava sSuppressWarnings(“unchecked*)

= public NamespaceAgent (GiraffaConfiguration conf) throws I0Exception,
1 giraffa-default.xml ClasshotFoundException
¥ i org apache.hadoop.hdfs rowkeyClass = (Class<? extends Rowkey>) Class. forName(
conf .get(Giraffaconfiguration.GRFA ROW KEY KEY,
GiraffaConfiguration.GRFA_ROW KEY DEFAULT)) ;

hadoop@ubuntu: ~/workspace/Giraffa

[Problems @ Javadoc [Declaration| & Console 22 . % Debug| 4’ Search

No consoles to display at this time.

Writable Smartinsert 466:56

49

=)
c
LL
O
L
—

50

