S(b)-Trees: An Optimal Balancing of Variable Length Keys

Konstantin V. Shvachko
Fremont, CA, U.S.A.
kshvachko@4ds.com

Abstract keys in the set. Therefore, logarithm is the optimum for
searching in linearly ordered sets. The same lower bound is
The paper studies the problem of maintainegernal true for insertions and deletions, since in order to insert or
dynamic dictionaries with variable length keys. We in- delete a key itis particularly necessary to check whether the
troduce a new type dbalanced trees called S(b)-trees, key is contained in the input set.
which generalize traditionaB-trees Contrary to B-trees Balanced trees are considered to be a standard solution

S(b)-trees provide optimal utilization of keys of variable for the MDD problem. Historically, first solutions of the
length, while the data access time remains logarithmical, problem were based dsinary trees Each node of a binary

the same as foB-trees. The main property of the new trees tree contains only one key and has at most two children,
is their local incompressibility. That is, any sequence con- such that the key in the left child is less while the key in
sisting ofb + 1 neighboring nodes of the tree cannot be the right child is greater than the key contained in the given
compressed into & well formed nodes. We prove— ¢ node. Searching in such a tree is logarithmic only if the
utilization lower bound for these trees wherés inversely  tree is balanced, otherwise the tree can degenerate into a
proportional to the tree branching. Logarithmic running st structure yielding a linear—time exhaustive search in the
time algorithms for search, insertion, and deletion are pre- worst case.

sented. The data structure is a flexible storage solution for A absolutely balanced trd@8] is a regular, that is each

semi-structured data and XML databases. node out-degree is eithér(internal node) o0 (leaf), bi-
Keywords:  dynamic dictionaries, balanced trees, nary tree such that the length of any path from the root of
B-trees, semi—structured data, XML databases. the tree to a leaf equals either the tree heighr 4 — 1.

A search in an absolutely balanced tree is obviously log-
arithmic, sinceh = [log, n]. Unfortunately, in order to
1. Introduction support the absolute balance condition while insertions and
deletions a substantial reconstruction of the tree may be re-
The problem of maintaining dynamic dictionaries quired such that the algorithms become linear rather than

(MDD) is considered to be a central problem of the the- logarithmic in time [18], [19].

ory of data structures. Let a sht of dictionary elements, So—calledweek balance conditionwere developed in
calledkeys be given. For any finite subsét of K and for order to avoid inefficiency of insertions and deletions while
any keyk three operations afearch insertion anddeletion preserving the asymptotic optimality of searching.

are defined as follows The first example of a balanced tree with all the three
operations optimal in time was proposed by G.M. Adelson-

ﬁ]eszrr?%)y/f)?) = I;DELJI{)/@} Velskii and E.M. Landis [1], [4]. An AVL-tree is a regular
! o binary tree satisfying the following week balance condition:
Deletd D, k) = D\ {k}

for any tree node the difference between the heights of its

The problem is to provide space—efficient way of storing tWo child subtrees is at most

keys, as well as time—efficient algorithms for performing ~ Another variant of week balance condition is used in

the operations. 2-3-trees (J.Hopcroft, 1970, [9]). All leaves of a 2-3-tree
For linearly ordered key sets searching can be performedare located at the same level of the tree. Balancing here is

in logarithmic on the number of keys time. Otherwise, only achieved by varying the out-degrees of the internal nodes,

the exhaustive search algorithm is applicable. It is also which can be eithe? or 3 [6], [21].

proven [20] that searching of a key in a finite linearly or- A generalization of 2-3-trees, calle@-trees, was pro-

dered set is lower—bounded by logarithm on the number of posed by R.Bayer [2], [3]. IB-trees like in 2-3-trees all



paths from the root to the leaves have the same length. The Additionally, we introduce a clas®S(b, ¢, p) of bal-
generalization is that the number of keys iBaree node  anced trees, calleB®S(b)-treesthat satisfy properties 1 and
is betweeny and2gq, for a fixed parametey, called the tree 2 above, but have another week balance condition

order.

By now, a number of variants of the classidattrees 3. The tree isb-locally dense meaning that the total
have been examined in literatur&*-trees [8], [18],B- weight of keys stored in any+ 1 neighboring nodes
trees [20], symmetrid3-trees [2], [19], anda, b)-trees [9] of the tree together with the delimiting for these nodes
are among them. keys is greater thabp.

For aB-treeT of orderq, composed of. nodes, itauti-

lizationis the fractiond(T") = W. Since the

In the paper we show that if all keys are of equal weight

number of keys in an-node B-tree varies betweeq and 1, then the class oB-trees of ordel; coincides with the
2¢n, the lower bound of utilization foB-trees isl /2. classs(0, ¢, 2¢), and that the class of 2-3-treesSif0, 1, 2).

The disadvantages aB-trees have been widely dis- Further, we study the relationships between the tree
cussed [8], [12], [17] in the context of this space lower classes. We prove that the classes Sib)-trees and
bound. The bottom line is that iB-trees each key is treated D5 (b)-trees coincide fob = 0, 1, while forb > 1 we have
as a unit and the key weight, that is the amount of space re-2 Strict inclusionS(b, ¢, p) C DS(b,¢,p). We also prove
quired for storing the key, is not taken into account. Hence, that S(b)-trees form a shrinking hierarchy by parameters
B-trees utilize memory well only when the keys have (al- @ndg, thatis
most) identical weight, while when the keys differ greatly
in weight, they lead to an exhaustive waste of memory.
Namely, it is not possible to guarantee any lower bound of _
utilization for B-trees greater thafiwhen key weights are o if ¢ <qgthenS(b,q,p) C S(b,¢,p)-
taken into account. .

In order to store variable weight keys efficiently in a bal- D5(b)-trees form the analogous hierarchy only by the pa-
anced tree, its node capacity should be determined based offmetery. ) ) )
the total weight of keys in a node rather than on the num-  The main result of the paper is the lower bound of uti-
ber of keys per node, and the balance conditions should bdization, which holds both fof5(b)-trees andDS(b)-trees.
re-formulated in adequate terms. For an n-node S(b)-tree T its utilization A(T) =

Initially the idea was mentioned by D.Knuth [8] (with a 22/ Welghtofkeys i

reference to an unpublished result of T.H.Martin). It was  We prove that for any > 0 the three parametets ¢,

precisely formulated and analyzed in [12]. andp can be chosen in such a way thef7") > 1 — ¢ for
E.M. McCreight [10] describes a strategy for allocating any treeT € S(b, ¢, p) with sufficiently large number of

variable length keys across nodes adB&tree. The ideais  nodesn.

to place smaller keys into higher level internal tree nodes in  Finally, we construct logarithmic—time algorithms repre-

order to increase their branching. “This strategy results in senting the three basic operations for balanced trees.

e if b’ <bthenS(b,q,p) C S, q,p).

shallow trees with fast access time”. Our former papers consider a number of special cases of
This paper presents a generalized approach to the solug(b)_trees [12] - [17].
tion of the MDD problem with variable weight keys. We in- S(b)-trees have been implemented in three software sys-

troduce a clasS(b, ¢, p) of balanced trees, callet{b)-trees  tems, TheStarset programming languagesess(1)-trees
of orderq and rankp, which is characterized by the follow-  gescribed in [12] for representing its set data types [5].
Ing properties. A modified variant ofS(1)-trees was used as a base
1. The total weight of keys contained in one tree node Model for a Linux file system originally callefreeFSand
does not exceed currently known aRReiserFSThe representation of a whole
file system by a balanced tree has been proven to be more ef-
2. The number of keys in a non-root node of the tree is at ficient compared to the traditional file systems both in terms
leastg. of the execution time of file operations, especially for small
files, and with respect to the disk space utilization.
The third systenBTreeLib[17] is an implementation of
the data structure described here as a stand—alone multi—
process multi-thread library written in C++. STreeLib is
designed as a storage solution for semi—structured data. Par-
Incompressibility is a week balance condition for ticulalrly, as a data storage for native XML databases it rep-
S(b)-trees. resents an alternative to traditionai"-trees.

3. The tree ish-locally incompressiblemeaning infor-
mally that for anyb + 1 neighboring nodes of the same
level of the tree the nodes cannot be "compressed” into
b nodes satisfying the first two properties.



2. Basic definitions

2.1. Trees

A utilization of ann-vertex B-treeT" of orderq is given
by the ratios(7') = £
It is well known for B-trees [8], [19], [18], [9] that

We consider trees that store keys chosen from a finite Proposition 2.1 If 7' is ann-vertexB-tree of orderg, then

key setK. Each nodeS = (So,k1,51,--.,km,Sm) Of
the tree contains a sequence of kéydrom K separating
references to child nodés, such that if the number of keys
is m then the number of referencesris+ 1. For the leaf
nodes all the references are empty.

As usually we say thaf’ is a parentor anancestorof
S if there is a path fromF' to S in the tree. S is called a
child or adescendamf F' in the case. If the path frorf' to
S has lengthl then F' is called thedirect ancestor of5. If
F ={(So,k1,51,...,km,Smn) andS = S; thenS is called
thei-th direct descendant df.

The number of keysn in a tree nodeS is called the
order of the node The number of the nodeison—empty
direct descendants is itsut—degree The out—degree of a
leaf is0, while for an internal node it equaias + 1. Note

that here we do not accept nodes with a mixture of empty

and non—empty references.

Let a path of lengtt lead from the tree rodf’ to some
nodeS. Thenn is said to be théevelof S in the tree. We
suppose that larger valuesofcorrespond tdigherlevels
of the tree.

We say that vertex¥' is acommon ancestoof vertices
S andR, iff F'is an ancestor of botd andR. F'is said to
be thenearest common ancestof verticesS andR, if it is
their highest common ancestor.

Let k£(S) denote the set of keys directly containedSin
and letK (S) denote the total set of keys contained in the
sub—tree rooted &ff.

2.2. Structured trees

Definition 2.1 Let (K, <) be a finite ordered key set. A
treeT is calledstructuredff

1. All paths inT" from the root to the leaves have equal
length,

2. For any nodes = (S, k1, 51, - ..

.. <ky, &
Vi(l <i<m= (VlEK(Si,1)>
(Vr € K(S)(I < k; < 1)

) kmv Sm>

A natural numbey; is anorder of a structured tred" if
for each non-root vertex of the tree its order is at least

2.3.B-trees

Definition 2.2 Letq > 0 be a natural number. A structured
tree T' of order ¢ is called a B-tree of ordery iff for any
vertexS its order |k(S)| < 2¢

1.6(T) >3-

2n’

2. search, insertion, and deletion of a keyZhcan be
performed in timed (log n).

2.4.DS(b)-trees

Consider aweighted ordered set of keyd, <, u),
where(K, <) is an ordered key set, ands aweight func-
tion that maps each key € K to itsweightu(k), which is
a positive natural number.

Let us denotgi,.x (K) = max{u(k) | k € K}

Let D C K. Theweight of setD is given by

p(D) =" p(k)

keD

If S is a vertex of a tred” then its weight isu(S) =
w(k(S)). The complete weight of tred is M(T)
p(K(T)).

Thetree rankis a natural numbep, such that for each
vertexS of the tree its weight(S) < p.

Consider a structured trdé A neighboring relatiorfor
the vertices of the tree is introduced in the following way.
Let L and R be vertices of the same level 6f Consider a
set of keysl = K (L) U K(R). Then vertex is said to be
the left neighborof vertex R, and R is said to be theight
neighborof L, iff there exists ainique key k in K(T) \ I,
which satisfies the following property:

(Wl € K(L))(¥r € K(R)(I < k < )

k is called thedelimiting keyfor the neighboring nodeg

and R. Informally, two verticesL and R of the same level

of the tree are the neighbors, if there are no other vertices
of the same level between them. Note that the delimiting
key for any pair of neighboring nodes belongs to the nearest
common ancestor of the neighbors.

A sequencer = Sy, k1,51, - .., km, Sy Of vertices and
keys of a tre€l" is called asweepiff each pairS;_1, S; of
nodes{=1,...,m) of the sweep is a pair of neighbors in
the tree, and; is their delimiting key. The numben of
delimiting keys in the sequence is called feagth of the
sweep Theweight of the sweeis defined by

p(o) = pu(So) + p(k1) + p(S1) + -+ + p(km) + p(Sm)

A sweepo of lengthm of a rankp structured tred” is
said to bedensdff its weight

u(o) > mp



A structured tred” of rankp is said to beé-locally dense
iff each of its sweeps of lengthis dense.b in this case is
called thelocality parameter

Definition 2.3 Let (K, <, 1) be a weighted ordered set of
keys. A structured-locally dense treél’ of order ¢ and
rank p is called aDS(b)-tree of orderg and rankp iff its
parameters, ¢, andp are natural numbers, such that

q>0, ¢>0b, p>2qumax(K)

The class of such trees is denotedBg (b, ¢, p). Note
thatif ¢ > g2, thenDS(b, q1,p) € DS(b, g2, p).

2.5.5(b)-trees

Given a collectionSy, S, ..., S,, of trees and a col-
lection k4, ..., k,, of keys we can construct a new tree
S = (So,k1,51,...,km,Sm), which is represented by the
root node, consisting of the sequence of kays.. ., k,,
separatingn + 1 references to the roots of the initial trees
S0,51,. .., Sm.

We need another tree constructor, which given the two
collections of trees and keys builds a new tree denfted
[So, k1,51, -, km,Sm], which is obtained by combining
all the root nodesS; separated b¥; in one new root node.
Formally, if S; = (S0, li1, Si1,...) fori =0,...,m, then

= (800, lo1, So1, - - -
k17
S1071117S117 e

[S()a k15‘5’17 ceey kmasm]

K
SmOv lmlv Smh c >

Particularly, for two vertices
[<L07 l17 Ll> 5 ka <R07 T1, R1>] = <L07 ll7 Lla k; ROa T1, Rl)

A sequencey, k1,51, ..
partition of a vertexs iff

-y km, Sy, is called anm +1)-

S = [S()aklasla .. wknusm}

Any (m + 1)-partition of S is determined by a sequence,
of m keys from.S, which uniquely specify the respective
sequence ofi + 1 nodes.

An (m + 1)-partition of a vertexS is calledproper with
respect to parameters and g, or (p, ¢)-proper, iff for all
1=0,1,...,m the following holds:

n(Si) <p& |k(Si)| > q

Otherwise, the partition is said to maproper.

A sweepo = Sy, k1,51, ..., kmn, Sy of lengthm of a
structured tred” of orderg and rankp is said to bancom-
pressible(with respect top andg), iff any m-partition of

[o] is improper. That is, if the sweep consistingraf+ 1
nodes cannot be compressed into a smaller number of nodes
retaining the original rank and ordel.

Finally, T" is calledb-locally incompressibleiff each of
its sweeps of lengthis incompressible.

Definition 2.4 Let (K, <, u) be a weighted ordered set of
keys. A structured-locally incompressible tre& of order
g and rankp is calledS(b)-tree of order; and rankp iff its
parameters, ¢ andp are natural numbers, such that
q>0, g¢=b p=2qumax(K)
Let S(b,q,p) denote the class of(b)-trees (read as
sweep—b—tree) of orderand rankp.

2.6. Utilization

Consider a structured treB of orderp. The ratio of
the total weightM (T") of the given tre€l’ to the maximal
possible weightip of ann-vertex structured tree of rank

is called autilization of the tree.

Note that our utilizationA defined for structured trees
composed of variable length keys differs essentially from
the utilizationd known for B-trees in that\ is a function of
the weight of the tree, rather than of the number of its keys
as in the case aB-trees.A becomes equivalent tbonly if
the weight functior. identically equald on the key sekK.

3. A Hierarchy of Balanced Trees

For b 0 both the density and the incompressibil-
ity properties are degenerate, since they don’t impose any
additional restrictions on a structured tree, meaning that
any structured tree of rank is both aS(0)-tree and a
DS (0)-tree of rankp.

Proposition 3.1 The class of all structured trees coincides

with the union
U U s0,4,p)

q>0p>2q

B-trees form a subclass of this class.

Proposition 3.2 Let (K, <, uo) be an ordered key set with
the weight function that identically equalg on K. Then
the class ofB-trees of orderg coincides with the class

5(0,q,2q).



A class of 2-3-trees ([8], [9], [18], [19], [20]) being a
class ofB-trees of order; = 1 coincides withS(0, 1, 2).

Another example ofS(0)-trees, calledB-trees with
bounded key lengths given in [12], [8]. This is the most

As we mentioned above the properties of density and in-
compressibility degenerate in caseof= 0. Therefore,
from now on we will always suppose thiat> 0.

DS (b)-trees will be used for constructing lower bounds

simple variant of trees intended to store variable weight of utilization of the trees, since for proving the bounds only

keys.

Proposition 3.3 The class ofB-trees with bounded key
length of rankp is a proper subclass of the clasg0, 1, p).

Forb = 1 the classes of (b)-trees and) S(b)-trees also

sweep density is used rather than incompressibility. Incom-
pressibility is required for constructing efficient algorithms
of search, insertion, and deletion §i{b)-trees. Finally, all
the results are applied 1b)-trees.

4. Space Lower Bounds

coincide. The difference between density and incompress-

ibility manifests itself when the locality parameter- 1.

Lemma 3.4 Let S be a vertex of a structured tree such that
‘S| Z b(q-i—l)-l andb S q S m. Then,u(S) S bp
implies that there exists @, ¢)-properb-partition of vertex

S.
Using Lemma 3.4 we prove

Proposition 3.5

5(0,q,p) = DS(0,9,p)
S(1,¢,p) = DS(1,q,p)
S(b,q,p) < DS(b,g,p)foralldb>1

Proposition 3.5 (3) means that for> 1 incompressibil-
ity is a stronger property than density.

Lemma 3.6 If a sweepr of lengthb is incompressible then
any of its sub-sweeps of lendth< b is incompressible too.

Lemma 3.6 directly implies thatS(b)-trees form a
shrinking hierarchy by the locality parameter

. , »
Proposition 3.7 Letd’ < b <qg < S (K- Then

S(b,q,p) € S(',q,p)

An analogous hierarchy fap.S(b)-trees cannot be con-

In this section we analyze space efficiency5¢b)-trees.
All lower bounds below will be proven foDS(b)-trees,
which by Proposition 3.5 also hold féi(b)-trees.

Lemma 4.1 LetT be a structured tree of order. Letn >
q + 1 be the number of vertices @. Then the number of
leavesr of T is bounded by

gn—1)+1

x >
qg+1

Proof. This lemma will be proven by induction by the
height of the tree. If the height &f is 1, then the number
of leaves in it ist = n — 1, and we should just prove that
n—12> ‘1("_711)“ Indeed, by the hypothesis of the lemma
n > q+ 2 > 2 and thus

-1 1 -2
D oyt 1=
q

qg+1 —

Suppose now that the height @fis h, and that for all
trees of height less thainthe bound for the leaves has al-
ready been established. Consider the subtre€bdheight
h — 1. Let the number of such subtreesdeach having;
vertices andg; leaves{ =1, ..., d), respectively. Then

n=14+>n;
x =y @

Using the assumption of the induction we get

structed. One can easily construct two examples showing

: L i d d
both that a sweep is dense, while its sub-sweeps are not r o= Y a> ﬁ S (qni+1) =
dense, and conversely that a sweep is not dense even if its = L (gn—1)+d)

q+1

sub-sweeps are all dense.
Both S(b)-trees andD.S(b)-trees form a shrinking hier-
archy by their ordey.

. , »

Proposition 3.8 Letd < ¢’ < ¢ < () Then
S(b,q,p) < S(b.d',p)
DS(b,q,p) < DS(b,q,p)

[

Theorem 4.2 LetT € DS(b, ¢, p) be ann-vertex tree such
thatn > ¢+ 1. Then

As in a structured treé > 1 the required follows.

b g b+1
b+1qg+1 n

A(T) >



Proof. Let us consider a sweep of T' composed of
all leaves of the tree with their delimiting keys. Note that

5. Algorithms

the sweep includes all keys contained in the tree. From  The detailed algorithms can be found in [17].

this sweep we choose a maximal numberf disjoint sub-
sweepsr; (1 = 1,...,s) of lengthb.

Since sweeps of lengthin T are dense, and since all the
sweeps chosen are disjoint we have

M(T) = () > 3 i) > bps

=1

Let 2 be the number of leaves @f. Then the number of
chosen sub-sweepsds= L}i—lJ Applying Lemma 4.1 we

obtain

x 1_g(n=1)+1
s > g1 1> ol
1 qg—

1 _q _ _
> Ny T T brigrl L

—-1>

We know thatM (T") > bps, and consequently

AT) = B >be >
b 1 b —1
> magtn ~w(mger H0)

Sinceq > b > 0 we obtain

b q 1456
A(T -
D> 1w

This theorem implies a number of important corollaries.

Corollary 4.3 Let the locality parameteb > 0 be fixed.
Then for anye > 0 two parametersy > b andp >
2qumax(K) can be chosen, such that for any trée €
DS(b, q,p) havingn > (b+1)(g+1) vertices its utilization

A(T) > — —
D> 51¢
From the practical viewpoirfi(1)-tree model is the most
important modification of5(b)-trees. We studied the cases
of S(1)-trees andb(2)-trees in details in [14] and [16] using

Going from the root to the leaves of the tr®earchper-
forms local searches in the tree nodes. It either finds the
given key in the current nod€ or chooses a direct descen-
dant of S and proceeds with it.

InsertionandDeletionboth start with the search looking
for a node where the given key should be either inserted or
removed. In both cases it is possible to locate a leaf node
for that purposes. Then a common for insertion and deletion
procedure of balancing is called.

Starting from the modified leaf and moving backwards
along the path the leaf was originally accessed by the
search, the BALANCE procedure consecutively performs
local balancing of the vicinities of the vertices in the path.
For each current verte¥ BALANCE decides whethe§' is
imbalanced by verifying the following three conditions

1. one of theb + 1 sweeps of length, containings, is
not incompressible.

2. |5 <q.

3. u(S) >p.

The conditions are verified in the order they are listed. If
none of them holds, the procedure skips the level.

If (1) a compressible sweep is found in the vicinity of
S then balancing ofS is performed by compressing the
sweep(s). Namely, BALANCE redistributes keys between
the nodes of the sweep in order to empty and then to re-
move at least one of them. It can be proven that not more
than two vertices must be removed in order to restore the
balance under the condition.

If (2) all sweeps in the vicinity are incompressible but the
number of keys irf is insufficient, then BALANCE merges
S with one of its neighbors. If the neighbor’s weight after
that is normal £ p) then balancing is finished. Otherwise,
the overweight neighbor becomes the current node and is
further balanced under Condition 3.

Finally, (3) if everything is fine withS with respect to

another method of proving the bounds. The lower bound for its order and the incompressibility of the vicinity, but the
these special cases can be obtained from Corollary 4.3 byweight is not right BALANCE tries to move as many keys
substituting the appropriate values of the locality parameterof S as possible to the left and/or to the right parts of the

b=1,2.
From the formal viewpoint the most interesting result
gives the following

Theorem 4.4 Let(K, <, u) be a weighted ordered key set.
Then for anys > 0 three parameter$ > 0, ¢ > b and

p > 2qumax(K) can be chosen, such that for any tfBec
DS(b, q,p) havingn > (b + 1)? vertices its utilization

A(T)>1-¢

vicinity. If all the keys ofS have been redistributed among

the nodes of the vicinity then the node is eliminated. If it

was possible to move just enough keys outSointo the

neighbors, such that the weight of kegsretained is less

thanp then balancing is completed. Otherwisgjs split

into 2 or more vertices. It can be shown that only a constant

number of new vertices can appear that way for each level.
Balancing of the current level of the tree can modify

some parent vertices, namely the direct ancestd& ahd

its two nearest neighbors, but never affects the higher-level



nodes that have been balanced before. The modified parf10] E.M. McCreight, Pagination of B*-Trees with

ent vertices are balanced in their turn when the procedure

reaches them moving backwards along the path.
Finally, BALANCE stops at the tree root. If the root
turned out to be empty, it releases the root. If the root ex-

ceeds the required weight, it creates a new root and splits

the old one into two or more nodes as above.

Variable-Length RecorgdsCommun. ACM, vol. 20, 9,
1977, pp. 670-674.

[11] A.L. Rosenberg, L. Snyder,Time— and Space—
Optimality in B-TreesACM Trans. Database Syst. 6,
1, 1981, pp. 174-193.

Thus the procedure examines all the nodes that lay onp12] A p. pinchuk, K.V. Shvachkdvlaintaining Dictionar-

the path from the root of " to the leaf it started with and

balances them if necessary together with the vicinities of the

path nodes. Each vicinity consists of at m2ist- 1 vertices,

which means that the total number of nodes modified during

balancing is bounded by(2b + 1), whereh is the height of
T.
The time complexity of the algorithms is summarized by

Proposition 5.1 Search, insertion, and deletion of a key in
an-vertexS(b)-tree can be performed in tin@(logn).

References

[1] G.M. Adel'son-Vel'skii, E.M. LandisAn Algorithm for
the Organization of InformatigrSoviet Math. Doklady
vol. 3, 1972, pp. 1259-1262.

[2] R. Bayer,Symmetric binary B-tree: Data Structure and
Maintenance AlgorithmsActa Inf., vol. 1, 4, 1972,
pp. 290-306.

[3] R. Bayer, E. McCreight,Organization and Mainte-
nance of Large Ordered IndexeActa Inf., vol. 1, 3,

1972, pp. 173-189.

C.C. FosterA Generalization of AVL-Tree€ommuni-
cations of the ACM, vol. 16, 1973, pp. 513-517

[4]

M.M. Gilula, The Set Model for Database and Infor-
mation Systemdddison-Wesley (In Association with
ACM Press): Wokingham, 1994.

[5]

[6] L.J. Guibas, R. SedgewickA Dichromatic Frame-
work for Balanced TreesProceedings, 19-th Annual
IEEE Symposium on Foundations of Computer Sci-
ence, 1978, pp. 8-12

[7] G.K. Gupta, B. SrinivasanApproximate Storage Uti-
lization of B-tree Inf. Proc. Lett. vol. 22, 1986, pp. 243—
246

[8] D.E. Knuth, The Art of Computer Programmingol.

3 (Sorting and Searching), Addison-Wesley, Reading,
MA, 1973.

[9] H.R. Lewis, L. DenenbergData Structures and Their
Algorithms HarperCollins, NY, 1991.

ies: Space-Saving Modifications of B-Treégcture
Notes in Computer Science, vol. 646, 1992, pp. 421—
435.

[13] K.V. Shvachko, Space-Saving Modifications of B-
Trees In Proceedings of Symposium on Computer Sys-
tems and Applied Mathematics, St.Petersburg, 1993,
p. 214.

[14] K.V. Shvachko,S(1)-trees: Space Saving General-
ization of B-Trees with 1/2 Utilizatiqn1994 (unpub-
lished).

[15] K.V. Shvachko,Optimal Representation of Dynamic
Dictionaries by Balanced Tregén Proceedings of Xl
International Conference on Logic, Methodology, and
Philosophy of Science, Obninsk, Russia, vol. 2, 1995,
pp. 181-186 (in Russian).

[16] K.V. Shvachko.Space Saving Generalization of B-
Trees with 2/3 UtilizationComputers and Mathematics
with Applications, vol. 30, No.7, 1995, pp. 47-66.

[17] K.V. Shvachko,S(b)-tree Library: An Efficient Way of
Indexing Data DIMACS: Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 50, Exter-
nal Memory Algorithms (J.M. Abello, J.S. Vitter, Eds.),
American Mathematical Society, DIMACS, 1999.

[18] T.J. Teorey, D.P. FryDesign of Database Structures
vol. 2, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[19] N. Wirth, Algorithms and Data StructurePrentice-
Hall, Englewood Cliffs, NJ, 1986.

[20] D. Wood, Data Structure, Algorithms, and Perfor-
mance Addison-Wesley Publishing Company, 1993.

[21] A.C.-C. Ya0,0n Random 2-3 Tree#écta Inf., vol. 9,
1978, pp. 159-170.



