
S(b)-Trees: An Optimal Balancing of Variable Length Keys

Konstantin V. Shvachko
Fremont, CA, U.S.A.
kshvachko@4ds.com

Abstract

The paper studies the problem of maintainingexternal
dynamic dictionaries with variable length keys. We in-
troduce a new type ofbalanced trees, called S(b)-trees,
which generalize traditionalB-trees. Contrary toB-trees
S(b)-trees provide optimal utilization of keys of variable
length, while the data access time remains logarithmical,
the same as forB-trees. The main property of the new trees
is their local incompressibility. That is, any sequence con-
sisting ofb + 1 neighboring nodes of the tree cannot be
compressed into ab well formed nodes. We prove1 − ε
utilization lower bound for these trees whereε is inversely
proportional to the tree branching. Logarithmic running
time algorithms for search, insertion, and deletion are pre-
sented. The data structure is a flexible storage solution for
semi-structured data and XML databases.

Keywords: dynamic dictionaries, balanced trees,
B-trees, semi–structured data, XML databases.

1. Introduction

The problem of maintaining dynamic dictionaries
(MDD) is considered to be a central problem of the the-
ory of data structures. Let a setK of dictionary elements,
calledkeys, be given. For any finite subsetD of K and for
any keyk three operations ofsearch, insertion, anddeletion
are defined as follows

Search(D, k) = k ∈ D
Insert(D, k) = D ∪ {k}
Delete(D, k) = D \ {k}

The problem is to provide space–efficient way of storing
keys, as well as time–efficient algorithms for performing
the operations.

For linearly ordered key sets searching can be performed
in logarithmic on the number of keys time. Otherwise, only
the exhaustive search algorithm is applicable. It is also
proven [20] that searching of a key in a finite linearly or-
dered set is lower–bounded by logarithm on the number of

keys in the set. Therefore, logarithm is the optimum for
searching in linearly ordered sets. The same lower bound is
true for insertions and deletions, since in order to insert or
delete a key it is particularly necessary to check whether the
key is contained in the input set.

Balanced trees are considered to be a standard solution
for the MDD problem. Historically, first solutions of the
problem were based onbinary trees. Each node of a binary
tree contains only one key and has at most two children,
such that the key in the left child is less while the key in
the right child is greater than the key contained in the given
node. Searching in such a tree is logarithmic only if the
tree is balanced, otherwise the tree can degenerate into a
list structure yielding a linear–time exhaustive search in the
worst case.

An absolutely balanced tree[18] is a regular, that is each
node out-degree is either2 (internal node) or0 (leaf), bi-
nary tree such that the length of any path from the root of
the tree to a leaf equals either the tree heighth or h − 1.
A search in an absolutely balanced tree is obviously log-
arithmic, sinceh = dlog2 ne. Unfortunately, in order to
support the absolute balance condition while insertions and
deletions a substantial reconstruction of the tree may be re-
quired such that the algorithms become linear rather than
logarithmic in time [18], [19].

So–calledweek balance conditionswere developed in
order to avoid inefficiency of insertions and deletions while
preserving the asymptotic optimality of searching.

The first example of a balanced tree with all the three
operations optimal in time was proposed by G.M. Adelson-
Velskii and E.M. Landis [1], [4]. An AVL-tree is a regular
binary tree satisfying the following week balance condition:
for any tree node the difference between the heights of its
two child subtrees is at most1.

Another variant of week balance condition is used in
2-3-trees (J.Hopcroft, 1970, [9]). All leaves of a 2-3-tree
are located at the same level of the tree. Balancing here is
achieved by varying the out-degrees of the internal nodes,
which can be either2 or 3 [6], [21].

A generalization of 2-3-trees, calledB-trees, was pro-
posed by R.Bayer [2], [3]. InB-trees like in 2-3-trees all

paths from the root to the leaves have the same length. The
generalization is that the number of keys in aB-tree node
is betweenq and2q, for a fixed parameterq, called the tree
order.

By now, a number of variants of the classicalB-trees
have been examined in literature.B∗-trees [8], [18],B+-
trees [20], symmetricB-trees [2], [19], and(a, b)-trees [9]
are among them.

For aB-treeT of orderq, composed ofn nodes, itsuti-

lization is the fractionδ(T) = number of keys inT
2qn . Since the

number of keys in ann-nodeB-tree varies betweenqn and
2qn, the lower bound of utilization forB-trees is1/2.

The disadvantages ofB-trees have been widely dis-
cussed [8], [12], [17] in the context of this space lower
bound. The bottom line is that inB-trees each key is treated
as a unit and the key weight, that is the amount of space re-
quired for storing the key, is not taken into account. Hence,
B-trees utilize memory well only when the keys have (al-
most) identical weight, while when the keys differ greatly
in weight, they lead to an exhaustive waste of memory.
Namely, it is not possible to guarantee any lower bound of
utilization for B-trees greater than0 when key weights are
taken into account.

In order to store variable weight keys efficiently in a bal-
anced tree, its node capacity should be determined based on
the total weight of keys in a node rather than on the num-
ber of keys per node, and the balance conditions should be
re-formulated in adequate terms.

Initially the idea was mentioned by D.Knuth [8] (with a
reference to an unpublished result of T.H.Martin). It was
precisely formulated and analyzed in [12].

E.M. McCreight [10] describes a strategy for allocating
variable length keys across nodes of aB∗-tree. The idea is
to place smaller keys into higher level internal tree nodes in
order to increase their branching. “This strategy results in
shallow trees with fast access time”.

This paper presents a generalized approach to the solu-
tion of the MDD problem with variable weight keys. We in-
troduce a classS(b, q, p) of balanced trees, calledS(b)-trees
of orderq and rankp, which is characterized by the follow-
ing properties.

1. The total weight of keys contained in one tree node
does not exceedp.

2. The number of keys in a non-root node of the tree is at
leastq.

3. The tree isb-locally incompressible, meaning infor-
mally that for anyb+1 neighboring nodes of the same
level of the tree the nodes cannot be ”compressed” into
b nodes satisfying the first two properties.

Incompressibility is a week balance condition for
S(b)-trees.

Additionally, we introduce a classDS(b, q, p) of bal-
anced trees, calledDS(b)-treesthat satisfy properties 1 and
2 above, but have another week balance condition

3’. The tree isb-locally dense, meaning that the total
weight of keys stored in anyb + 1 neighboring nodes
of the tree together with the delimiting for these nodes
keys is greater thanbp.

In the paper we show that if all keys are of equal weight
1, then the class ofB-trees of orderq coincides with the
classS(0, q, 2q), and that the class of 2-3-trees isS(0, 1, 2).

Further, we study the relationships between the tree
classes. We prove that the classes ofS(b)-trees and
DS(b)-trees coincide forb = 0, 1, while for b > 1 we have
a strict inclusionS(b, q, p) ⊂ DS(b, q, p). We also prove
thatS(b)-trees form a shrinking hierarchy by parametersb
andq, that is

• if b′ < b thenS(b, q, p) ⊂ S(b′, q, p).

• if q′ < q thenS(b, q, p) ⊂ S(b, q′, p).

DS(b)-trees form the analogous hierarchy only by the pa-
rameterq.

The main result of the paper is the lower bound of uti-
lization, which holds both forS(b)-trees andDS(b)-trees.
For an n-node S(b)-tree T its utilization ∆(T) =
total weight of keys inT

np .
We prove that for anyε > 0 the three parametersb, q,

andp can be chosen in such a way that∆(T) > 1 − ε for
any treeT ∈ S(b, q, p) with sufficiently large number of
nodesn.

Finally, we construct logarithmic–time algorithms repre-
senting the three basic operations for balanced trees.

Our former papers consider a number of special cases of
S(b)-trees [12] – [17].

S(b)-trees have been implemented in three software sys-
tems. TheStarset programming languageusesS(1)-trees
described in [12] for representing its set data types [5].

A modified variant ofS(1)-trees was used as a base
model for a Linux file system originally calledTreeFSand
currently known asReiserFS. The representation of a whole
file system by a balanced tree has been proven to be more ef-
ficient compared to the traditional file systems both in terms
of the execution time of file operations, especially for small
files, and with respect to the disk space utilization.

The third systemSTreeLib[17] is an implementation of
the data structure described here as a stand–alone multi–
process multi–thread library written in C++. STreeLib is
designed as a storage solution for semi–structured data. Par-
ticulalrly, as a data storage for native XML databases it rep-
resents an alternative to traditionalB+-trees.

2. Basic definitions

2.1. Trees

We consider trees that store keys chosen from a finite
key setK. Each nodeS = 〈S0, k1, S1, . . . , km, Sm〉 of
the tree contains a sequence of keyski from K separating
references to child nodesSi, such that if the number of keys
is m then the number of references ism + 1. For the leaf
nodes all the references are empty.

As usually we say thatF is a parentor anancestorof
S if there is a path fromF to S in the tree.S is called a
child or adescendantof F in the case. If the path fromF to
S has length1 thenF is called thedirect ancestor ofS. If
F = 〈S0, k1, S1, . . . , km, Sm〉 andS = Si thenS is called
thei-th direct descendant ofF .

The number of keysm in a tree nodeS is called the
order of the node. The number of the node’snon–empty
direct descendants is itsout–degree. The out–degree of a
leaf is0, while for an internal node it equalsm + 1. Note
that here we do not accept nodes with a mixture of empty
and non–empty references.

Let a path of lengthn lead from the tree rootT to some
nodeS. Thenn is said to be thelevelof S in the tree. We
suppose that larger values ofn correspond tohigher levels
of the tree.

We say that vertexF is a common ancestorof vertices
S andR, iff F is an ancestor of bothS andR. F is said to
be thenearest common ancestorof verticesS andR, if it is
their highest common ancestor.

Let k(S) denote the set of keys directly contained inS,
and letK(S) denote the total set of keys contained in the
sub–tree rooted atS.

2.2. Structured trees

Definition 2.1 Let (K,¿) be a finite ordered key set. A
treeT is calledstructurediff

1. All paths inT from the root to the leaves have equal
length,

2. For any nodeS = 〈S0, k1, S1, . . . , km, Sm〉
k1 ¿ . . . ¿ km &
∀i(1 ≤ i ≤ m ⇒ (∀l ∈ K(Si−1))
(∀r ∈ K(Si))(l ¿ ki ¿ r))

A natural numberq is anorder of a structured treeT if
for each non-root vertex of the tree its order is at leastq.

2.3.B-trees

Definition 2.2 Letq > 0 be a natural number. A structured
tree T of order q is called aB-tree of orderq iff for any
vertexS its order|k(S)| ≤ 2q

A utilization of ann-vertexB-treeT of orderq is given
by the ratioδ(T) = |K(T)|

2qn
It is well known forB-trees [8], [19], [18], [9] that

Proposition 2.1 If T is ann-vertexB-tree of orderq, then

1. δ(T) > 1
2 − 1

2n ,

2. search, insertion, and deletion of a key inT can be
performed in timeO(log n).

2.4.DS(b)-trees

Consider aweighted ordered set of keys(K,¿, µ),
where(K,¿) is an ordered key set, andµ is aweight func-
tion that maps each keyk ∈ K to its weightµ(k), which is
a positive natural number.

Let us denoteµmax(K) = max{µ(k) | k ∈ K}
Let D ⊆ K. Theweight of setD is given by

µ(D) =
∑

k∈D

µ(k)

If S is a vertex of a treeT then its weight isµ(S) =
µ(k(S)). The complete weight of treeT is M(T) =
µ(K(T)).

The tree rankis a natural numberp, such that for each
vertexS of the tree its weightµ(S) ≤ p.

Consider a structured treeT . A neighboring relationfor
the vertices of the tree is introduced in the following way.
Let L andR be vertices of the same level ofT . Consider a
set of keysI = K(L) ∪K(R). Then vertexL is said to be
the left neighborof vertexR, andR is said to be theright
neighborof L, iff there exists aunique keyk in K(T) \ I,
which satisfies the following property:

(∀l ∈ K(L))(∀r ∈ K(R))(l ¿ k ¿ r)

k is called thedelimiting keyfor the neighboring nodesL
andR. Informally, two verticesL andR of the same level
of the tree are the neighbors, if there are no other vertices
of the same level between them. Note that the delimiting
key for any pair of neighboring nodes belongs to the nearest
common ancestor of the neighbors.

A sequenceσ = S0, k1, S1, . . . , km, Sm of vertices and
keys of a treeT is called asweepiff each pairSi−1, Si of
nodes (i = 1, . . . , m) of the sweep is a pair of neighbors in
the tree, andki is their delimiting key. The numberm of
delimiting keys in the sequence is called thelength of the
sweep. Theweight of the sweepis defined by

µ(σ) = µ(S0) + µ(k1) + µ(S1) + · · ·+ µ(km) + µ(Sm)

A sweepσ of lengthm of a rankp structured treeT is
said to bedenseiff its weight

µ(σ) > mp

A structured treeT of rankp is said to beb-locally dense
iff each of its sweeps of lengthb is dense.b in this case is
called thelocality parameter.

Definition 2.3 Let (K,¿, µ) be a weighted ordered set of
keys. A structuredb-locally dense treeT of order q and
rank p is called aDS(b)-tree of orderq and rankp iff its
parametersb, q, andp are natural numbers, such that

q > 0, q ≥ b, p ≥ 2qµmax(K)

The class of such trees is denoted byDS(b, q, p). Note
that if q1 ≥ q2, thenDS(b, q1, p) ⊆ DS(b, q2, p).

2.5.S(b)-trees

Given a collectionS0, S1, . . . , Sm of trees and a col-
lection k1, . . . , km of keys we can construct a new tree
S = 〈S0, k1, S1, . . . , km, Sm〉, which is represented by the
root node, consisting of the sequence of keysk1, . . . , km

separatingm + 1 references to the roots of the initial trees
S0, S1, . . . , Sm.

We need another tree constructor, which given the two
collections of trees and keys builds a new tree denotedS =
[S0, k1, S1, . . . , km, Sm], which is obtained by combining
all the root nodesSi separated byki in one new root node.
Formally, if Si = 〈Si0, li1, Si1, . . .〉 for i = 0, . . . , m, then

[S0, k1, S1, . . . , km, Sm] = 〈S00, l01, S01, . . .
k1,
S10, l11, S11, . . .
. . .
km,
Sm0, lm1, Sm1, . . .〉

Particularly, for two vertices

[〈L0, l1, L1〉 , k, 〈R0, r1, R1〉] = 〈L0, l1, L1, k, R0, r1, R1〉
A sequenceS0, k1, S1, . . . , km, Sm is called an(m+1)-

partition of a vertexS iff

S = [S0, k1, S1, . . . , km, Sm]

Any (m + 1)-partition of S is determined by a sequence,
of m keys fromS, which uniquely specify the respective
sequence ofm + 1 nodes.

An (m + 1)-partition of a vertexS is calledproper with
respect to parametersp and q, or (p, q)-proper, iff for all
i = 0, 1, . . . ,m the following holds:

µ(Si) ≤ p & |k(Si)| ≥ q

Otherwise, the partition is said to beimproper.
A sweepσ = S0, k1, S1, . . . , km, Sm of lengthm of a

structured treeT of orderq and rankp is said to beincom-
pressible(with respect top and q), iff any m-partition of

[σ] is improper. That is, if the sweep consisting ofm + 1
nodes cannot be compressed into a smaller number of nodes
retaining the original rankp and orderq.

Finally, T is calledb-locally incompressible, iff each of
its sweeps of lengthb is incompressible.

Definition 2.4 Let (K,¿, µ) be a weighted ordered set of
keys. A structuredb-locally incompressible treeT of order
q and rankp is calledS(b)-tree of orderq and rankp iff its
parametersb, q andp are natural numbers, such that

q > 0, q ≥ b, p ≥ 2qµmax(K)

Let S(b, q, p) denote the class ofS(b)-trees (read as
sweep–b–tree) of orderq and rankp.

2.6. Utilization

Consider a structured treeT of order p. The ratio of
the total weightM(T) of the given treeT to the maximal
possible weightnp of ann-vertex structured tree of rankp

∆(T) =
M(T)

np

is called autilizationof the tree.
Note that our utilization∆ defined for structured trees

composed of variable length keys differs essentially from
the utilizationδ known forB-trees in that∆ is a function of
the weight of the tree, rather than of the number of its keys
as in the case ofB-trees.∆ becomes equivalent toδ only if
the weight functionµ identically equals1 on the key setK.

3. A Hierarchy of Balanced Trees

For b = 0 both the density and the incompressibil-
ity properties are degenerate, since they don’t impose any
additional restrictions on a structured tree, meaning that
any structured tree of rankp is both aS(0)-tree and a
DS(0)-tree of rankp.

Proposition 3.1 The class of all structured trees coincides
with the union ⋃

q>0

⋃
p>2q

S(0, q, p)

B-trees form a subclass of this class.

Proposition 3.2 Let (K,¿, µ0) be an ordered key set with
the weight functionµ0 that identically equals1 onK. Then
the class ofB-trees of orderq coincides with the class
S(0, q, 2q).

A class of 2-3-trees ([8], [9], [18], [19], [20]) being a
class ofB-trees of orderq = 1 coincides withS(0, 1, 2).

Another example ofS(0)-trees, calledB-trees with
bounded key length,is given in [12], [8]. This is the most
simple variant of trees intended to store variable weight
keys.

Proposition 3.3 The class ofB-trees with bounded key
length of rankp is a proper subclass of the classS(0, 1, p).

For b = 1 the classes ofS(b)-trees andDS(b)-trees also
coincide. The difference between density and incompress-
ibility manifests itself when the locality parameterb > 1.

Lemma 3.4 LetS be a vertex of a structured tree such that
|S| ≥ b(q+1)−1 andb ≤ q ≤ p

2qµmax(K) . Thenµ(S) ≤ bp

implies that there exists a(p, q)-properb-partition of vertex
S.

Using Lemma 3.4 we prove

Proposition 3.5

S(0, q, p) = DS(0, q, p)
S(1, q, p) = DS(1, q, p)
S(b, q, p) ⊂ DS(b, q, p) for all b > 1

Proposition 3.5 (3) means that forb > 1 incompressibil-
ity is a stronger property than density.

Lemma 3.6 If a sweepσ of lengthb is incompressible then
any of its sub-sweeps of lengthb′ < b is incompressible too.

Lemma 3.6 directly implies thatS(b)-trees form a
shrinking hierarchy by the locality parameterb.

Proposition 3.7 Let b′ < b ≤ q ≤ p
2qµmax(K) . Then

S(b, q, p) ⊂ S(b′, q, p)

An analogous hierarchy forDS(b)-trees cannot be con-
structed. One can easily construct two examples showing
both that a sweep is dense, while its sub-sweeps are not
dense, and conversely that a sweep is not dense even if its
sub-sweeps are all dense.

Both S(b)-trees andDS(b)-trees form a shrinking hier-
archy by their orderq.

Proposition 3.8 Let b ≤ q′ < q ≤ p
2qµmax(K) . Then

S(b, q, p) ⊂ S(b, q′, p)
DS(b, q, p) ⊂ DS(b, q′, p)

As we mentioned above the properties of density and in-
compressibility degenerate in case ofb = 0. Therefore,
from now on we will always suppose thatb > 0.

DS(b)-trees will be used for constructing lower bounds
of utilization of the trees, since for proving the bounds only
sweep density is used rather than incompressibility. Incom-
pressibility is required for constructing efficient algorithms
of search, insertion, and deletion inS(b)-trees. Finally, all
the results are applied toS(b)-trees.

4. Space Lower Bounds

In this section we analyze space efficiency ofS(b)-trees.
All lower bounds below will be proven forDS(b)-trees,
which by Proposition 3.5 also hold forS(b)-trees.

Lemma 4.1 Let T be a structured tree of orderq. Letn >
q + 1 be the number of vertices ofT . Then the number of
leavesx of T is bounded by

x >
q(n− 1) + 1

q + 1

Proof. This lemma will be proven by induction by the
height of the tree. If the height ofT is 1, then the number
of leaves in it isx = n − 1, and we should just prove that
n− 1 ≥ q(n−1)+1

q+1 . Indeed, by the hypothesis of the lemma
n ≥ q + 2 > 2 and thus

q(n− 1) + 1
q + 1

= (n− 1)− n− 2
q + 1

≤ n− 1 = x

Suppose now that the height ofT is h, and that for all
trees of height less thanh the bound for the leaves has al-
ready been established. Consider the subtrees ofT of height
h− 1. Let the number of such subtrees bed each havingni

vertices andxi leaves (i = 1, . . . , d), respectively. Then

n = 1 +
∑

ni

x =
∑

xi

Using the assumption of the induction we get

x =
∑d

i=1 xi ≥ 1
q+1

∑d
i=1(qni + 1) =

= 1
q+1 (q(n− 1) + d)

As in a structured treed > 1 the required follows.

Theorem 4.2 LetT ∈ DS(b, q, p) be ann-vertex tree such
thatn > q + 1. Then

∆(T) >
b

b + 1
q

q + 1
− b + 1

n

Proof. Let us consider a sweepΩ of T composed of
all leaves of the tree with their delimiting keys. Note that
the sweep includes all keys contained in the tree. From
this sweep we choose a maximal numbers of disjoint sub-
sweepsσi (i = 1, . . . , s) of lengthb.

Since sweeps of lengthb in T are dense, and since all the
sweeps chosen are disjoint we have

M(T) = µ(Ω) ≥
s∑

i=1

µ(σi) > bps

Let x be the number of leaves ofT . Then the number of
chosen sub-sweeps iss =

⌊
x

b+1

⌋
. Applying Lemma 4.1 we

obtain

s > x
b+1 − 1 > 1

b+1
q(n−1)+1

q+1 − 1 >

> n 1
b+1

q
q+1 − 1

b+1
q−1
q+1 − 1

We know thatM(T) > bps, and consequently

∆(T) = M(T)
np > b s

n >

> b
b+1

q
q+1 − 1

n (b
b+1

q−1
q+1 + b)

Sinceq ≥ b > 0 we obtain

∆(T) >
b

b + 1
q

q + 1
− 1 + b

n

This theorem implies a number of important corollaries.

Corollary 4.3 Let the locality parameterb > 0 be fixed.
Then for anyε > 0 two parametersq ≥ b and p ≥
2qµmax(K) can be chosen, such that for any treeT ∈
DS(b, q, p) havingn ≥ (b+1)(q+1) vertices its utilization

∆(T) >
b

b + 1
− ε

From the practical viewpointS(1)-tree model is the most
important modification ofS(b)-trees. We studied the cases
of S(1)-trees andS(2)-trees in details in [14] and [16] using
another method of proving the bounds. The lower bound for
these special cases can be obtained from Corollary 4.3 by
substituting the appropriate values of the locality parameter
b = 1, 2.

From the formal viewpoint the most interesting result
gives the following

Theorem 4.4 Let (K,¿, µ) be a weighted ordered key set.
Then for anyε > 0 three parametersb > 0, q ≥ b and
p ≥ 2qµmax(K) can be chosen, such that for any treeT ∈
DS(b, q, p) havingn ≥ (b + 1)2 vertices its utilization

∆(T) > 1− ε

5. Algorithms

The detailed algorithms can be found in [17].
Going from the root to the leaves of the treeSearchper-

forms local searches in the tree nodes. It either finds the
given key in the current nodeS or chooses a direct descen-
dant ofS and proceeds with it.

InsertionandDeletionboth start with the search looking
for a node where the given key should be either inserted or
removed. In both cases it is possible to locate a leaf node
for that purposes. Then a common for insertion and deletion
procedure of balancing is called.

Starting from the modified leaf and moving backwards
along the path the leaf was originally accessed by the
search, the BALANCE procedure consecutively performs
local balancing of the vicinities of the vertices in the path.
For each current vertexS BALANCE decides whetherS is
imbalanced by verifying the following three conditions

1. one of theb + 1 sweeps of lengthb, containingS, is
not incompressible.

2. |S| < q.

3. µ(S) > p.

The conditions are verified in the order they are listed. If
none of them holds, the procedure skips the level.

If (1) a compressible sweep is found in the vicinity of
S then balancing ofS is performed by compressing the
sweep(s). Namely, BALANCE redistributes keys between
the nodes of the sweep in order to empty and then to re-
move at least one of them. It can be proven that not more
than two vertices must be removed in order to restore the
balance under the condition.

If (2) all sweeps in the vicinity are incompressible but the
number of keys inS is insufficient, then BALANCE merges
S with one of its neighbors. If the neighbor’s weight after
that is normal (≤ p) then balancing is finished. Otherwise,
the overweight neighbor becomes the current node and is
further balanced under Condition 3.

Finally, (3) if everything is fine withS with respect to
its order and the incompressibility of the vicinity, but the
weight is not right BALANCE tries to move as many keys
of S as possible to the left and/or to the right parts of the
vicinity. If all the keys ofS have been redistributed among
the nodes of the vicinity then the node is eliminated. If it
was possible to move just enough keys out ofS into the
neighbors, such that the weight of keysS retained is less
thanp then balancing is completed. Otherwise,S is split
into 2 or more vertices. It can be shown that only a constant
number of new vertices can appear that way for each level.

Balancing of the current level of the tree can modify
some parent vertices, namely the direct ancestor ofS and
its two nearest neighbors, but never affects the higher-level

nodes that have been balanced before. The modified par-
ent vertices are balanced in their turn when the procedure
reaches them moving backwards along the path.

Finally, BALANCE stops at the tree root. If the root
turned out to be empty, it releases the root. If the root ex-
ceeds the required weight, it creates a new root and splits
the old one into two or more nodes as above.

Thus the procedure examines all the nodes that lay on
the path from the root ofT to the leaf it started with and
balances them if necessary together with the vicinities of the
path nodes. Each vicinity consists of at most2b+1 vertices,
which means that the total number of nodes modified during
balancing is bounded byh(2b+1), whereh is the height of
T .

The time complexity of the algorithms is summarized by

Proposition 5.1 Search, insertion, and deletion of a key in
a n-vertexS(b)-tree can be performed in timeO(log n).

References

[1] G.M. Adel’son-Vel’skii, E.M. Landis,An Algorithm for
the Organization of Information, Soviet Math. Doklady
vol. 3, 1972, pp. 1259–1262.

[2] R. Bayer,Symmetric binary B-tree: Data Structure and
Maintenance Algorithms, Acta Inf., vol. 1, 4, 1972,
pp. 290–306.

[3] R. Bayer, E. McCreight,Organization and Mainte-
nance of Large Ordered Indexes, Acta Inf., vol. 1, 3,
1972, pp. 173–189.

[4] C.C. Foster,A Generalization of AVL-Trees, Communi-
cations of the ACM, vol. 16, 1973, pp. 513–517

[5] M.M. Gilula, The Set Model for Database and Infor-
mation Systems, Addison-Wesley (In Association with
ACM Press): Wokingham, 1994.

[6] L.J. Guibas, R. Sedgewick,A Dichromatic Frame-
work for Balanced Trees, Proceedings, 19-th Annual
IEEE Symposium on Foundations of Computer Sci-
ence, 1978, pp. 8–12

[7] G.K. Gupta, B. Srinivasan,Approximate Storage Uti-
lization of B-tree, Inf. Proc. Lett. vol. 22, 1986, pp. 243–
246

[8] D.E. Knuth, The Art of Computer Programming, vol.
3 (Sorting and Searching), Addison–Wesley, Reading,
MA, 1973.

[9] H.R. Lewis, L. Denenberg,Data Structures and Their
Algorithms, HarperCollins, NY, 1991.

[10] E.M. McCreight, Pagination of B∗-Trees with
Variable-Length Records, Commun. ACM, vol. 20, 9,
1977, pp. 670–674.

[11] A.L. Rosenberg, L. Snyder,Time– and Space–
Optimality in B-Trees, ACM Trans. Database Syst. 6,
1, 1981, pp. 174-193.

[12] A.P. Pinchuk, K.V. Shvachko,Maintaining Dictionar-
ies: Space-Saving Modifications of B-Trees, Lecture
Notes in Computer Science, vol. 646, 1992, pp. 421–
435.

[13] K.V. Shvachko, Space-Saving Modifications of B-
Trees, In Proceedings of Symposium on Computer Sys-
tems and Applied Mathematics, St.Petersburg, 1993,
p. 214.

[14] K.V. Shvachko,S(1)-trees: Space Saving General-
ization of B-Trees with 1/2 Utilization, 1994 (unpub-
lished).

[15] K.V. Shvachko,Optimal Representation of Dynamic
Dictionaries by Balanced Trees, In Proceedings of XI
International Conference on Logic, Methodology, and
Philosophy of Science, Obninsk, Russia, vol. 2, 1995,
pp. 181-186 (in Russian).

[16] K.V. Shvachko.Space Saving Generalization of B-
Trees with 2/3 Utilization, Computers and Mathematics
with Applications, vol. 30, No.7, 1995, pp. 47-66.

[17] K.V. Shvachko,S(b)-tree Library: An Efficient Way of
Indexing Data, DIMACS: Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 50, Exter-
nal Memory Algorithms (J.M. Abello, J.S. Vitter, Eds.),
American Mathematical Society, DIMACS, 1999.

[18] T.J. Teorey, D.P. Fry,Design of Database Structures,
vol. 2, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[19] N. Wirth, Algorithms and Data Structure, Prentice-
Hall, Englewood Cliffs, NJ, 1986.

[20] D. Wood, Data Structure, Algorithms, and Perfor-
mance, Addison-Wesley Publishing Company, 1993.

[21] A.C.-C. Yao,On Random 2-3 Trees, Acta Inf., vol. 9,
1978, pp. 159–170.

