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Dynamic Dictionaries

Let K be a set of dictionary elements, called keys.

For any finite subset D of K and for any key k three operations 

of search, insertion, and deletion are defined as follows

Search(D,k)  = k ∈ D

Insert(D,k)   = D ∪ {k}

Delete(D,k)  = D \ {k}

The problem is to provide space-efficient way of storing keys, 

and time-efficient algorithms for performing the operations.



3
Linearly Ordered Key Sets

• For linearly ordered key sets searching can be performed in 

logarithmic on the number of keys time. 

• Otherwise, only the exhaustive search algorithm is applicable.

• A logarithmic lower bound is proven for searching in a finite 

linearly ordered set.

• log n is the optimum for searching in linearly ordered sets.

• log n is also the optimum for insertions and deletions, 

since in order to insert or delete a key it is particularly necessary 

to check whether the key is contained in the input set.
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Trees

� Balanced trees are considered to be a standard solution for the 
problem.

� Trees store keys chosen from a finite linearly ordered key set K.

� A node S = <S0, k1, S1, … , km, Sm> of the tree contains a 
sequence of keys ki from K separating references to child nodes 
Si, such that if the number of keys is m then the number of 
references is m+1. 

� For the leaf nodes all the references are empty.

� Keys are placed into the tree according to the ordering

110 ++ <<⇒≤≤ iii kSkmi

� All paths in the tree from the root to the leaves have equal length.

� Structured trees.
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History of Balanced Trees

� 1962 AVL-tree G.M.Adelson-Velskii and E.M.Landis 

� 1970 2-3-tree J.Hopcroft

� 1972 B-tree R.Bayer

� B*-tree, B+tree, (a,b)-tree, red-black-tree

� 1992 S(1)-tree utilization ½ - ε

� 1994 S(2)-tree utilization ⅔ - ε

� 1995 S(b)-tree utilization 1 – ε



6
B-trees

� B-tree T of order q is a structured tree such that for any node S
except for the root the number of keys in it is

� Utilization

� Lower bound

� Search, insertion, and deletion can be performed in time

� Disadvantage: key weight is not taken into account.
Cannot guarantee any lower bound greater than 0 with the weight 
taken into account
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Weight

� µ(k) – key weight

� µ(S) – node weight

� M(T) – total weight of all keys in tree T

� µmax(K) = max{µ(k) | k in K}

� p – node capacity: µ(S) ≤ p

� Utilization
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Sweep

� Neighboring nodes, delimiting keys.

� A sequence σ = S0, k1, S1, … , km, Sm of vertices and keys of a 

tree T is called a sweep iff each pair Si-1, Si is a pair of neighbors 
and ki is their delimiting key.
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S(b)-tree properties

� b – locality parameter

� q – tree order: |k(S)| ≥ q

� p – tree rank: µ(S) ≤ p

� µmax(K) – maximal key weight

� Sweep σ composed of m+1 nodes is dense if µ(σ) ≥ mp

� Sweep σ composed of m+1 nodes is incompressible w.r.t. p and 
q if nodes of σ cannot be "compressed" into m nodes with the 
same rank p and order q.

� T is b-locally dense if all its sweeps of length b are dense.

� T is b-locally incompressible if all its sweeps of length b are 
incompressible.
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S(b)-tree definitions

Let K be a weighted linearly ordered set of keys.

1. A structured b-locally dense tree T of order q and rank p is called a 
DS(b)-tree of order order q and rank p, if its parameters b, q, and p
are natural numbers satisfying

q > 0, q ≥ b, p ≥ 2q µmax(K) 

2. A structured b-locally incompressible tree T of order q and rank p
is called a S(b)-tree of order order q and rank p, if its parameters b, 
q, and p are natural numbers satisfying

q > 0, q ≥ b, p ≥ 2q µmax(K) 

Respective tree classes are denoted by DS(b,q,p) and S(b,q,p).
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Hierarchy of balanced trees

� Class of all structured trees is

� If µ ≡ 1 on K then class of B-trees of order q is S(0,q,2q).

� Class of 2-3-trees is S(0,1,2).

� S(0,q,p) = DS(0,q,p)
S(1,q,p) = DS(1,q,p)
S(1,q,p) ⊂ DS(1,q,p) for all b > 1

� If b’ < b < q ≤ p/ 2q µmax(K) then
S(b,q,p) ⊂ S(b’,q,p) 

� The same is not true for DS(b)-trees

� If b < q < q’ ≤ p/ 2q µmax(K) then
S(b,q,p) ⊂ S(b,q’,p)

DS(b,q,p) ⊂ DS(b,q’,p)
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Lower bounds

Theorem 1. Let T ∈ DS(b,q,p) and n > q+1 number of tree nodes. 

Then

Theorem 2. If locality parameter b > 0 is fixed, then for any ε > 0 two 
parameters q ≥ b and p ≥ 2q µmax(K) can be chosen such that for any 

tree T ∈ DS(b,q,p) having n ≥ (b+1)(q+1) nodes its utilization is

Theorem 3. For any ε > 0 three parameters b > 0, q ≥ b and 
p ≥ 2q µmax(K) can be chosen such that for any tree T ∈ DS(b,q,p)
having n ≥ (b+1)(b+1) nodes its utilization is
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Algorithms

Theorem 4. 
Search, insertion, and deletion of a key in a S(b)-tree containing n
nodes can be performed in time O(log n).


