
S(b)-Trees: an Optimal Balancing
of Variable Length Keys

Konstantin V.

Shvachko

2
Dynamic Dictionaries

Let K be a set of dictionary elements, called keys.

For any finite subset D of K and for any key k three operations

of search, insertion, and deletion are defined as follows

Search(D,k) = k ∈ D

Insert(D,k) = D ∪ {k}

Delete(D,k) = D \ {k}

The problem is to provide space-efficient way of storing keys,

and time-efficient algorithms for performing the operations.

3
Linearly Ordered Key Sets

• For linearly ordered key sets searching can be performed in

logarithmic on the number of keys time.

• Otherwise, only the exhaustive search algorithm is applicable.

• A logarithmic lower bound is proven for searching in a finite

linearly ordered set.

• log n is the optimum for searching in linearly ordered sets.

• log n is also the optimum for insertions and deletions,

since in order to insert or delete a key it is particularly necessary

to check whether the key is contained in the input set.

4
Trees

� Balanced trees are considered to be a standard solution for the
problem.

� Trees store keys chosen from a finite linearly ordered key set K.

� A node S = <S0, k1, S1, … , km, Sm> of the tree contains a
sequence of keys ki from K separating references to child nodes
Si, such that if the number of keys is m then the number of
references is m+1.

� For the leaf nodes all the references are empty.

� Keys are placed into the tree according to the ordering

110 ++ <<⇒≤≤ iii kSkmi

� All paths in the tree from the root to the leaves have equal length.

� Structured trees.

5
History of Balanced Trees

� 1962 AVL-tree G.M.Adelson-Velskii and E.M.Landis

� 1970 2-3-tree J.Hopcroft

� 1972 B-tree R.Bayer

� B*-tree, B+tree, (a,b)-tree, red-black-tree

� 1992 S(1)-tree utilization ½ - ε

� 1994 S(2)-tree utilization ⅔ - ε

� 1995 S(b)-tree utilization 1 – ε

6
B-trees

� B-tree T of order q is a structured tree such that for any node S
except for the root the number of keys in it is

� Utilization

� Lower bound

� Search, insertion, and deletion can be performed in time

� Disadvantage: key weight is not taken into account.
Cannot guarantee any lower bound greater than 0 with the weight
taken into account

qSkq 2)(≤≤

qn

TK
T

2

)(
)(=δ

q
T

2

1

2

1
)(−>δ

()nO log

7
Weight

� µ(k) – key weight

� µ(S) – node weight

� M(T) – total weight of all keys in tree T

� µmax(K) = max{µ(k) | k in K}

� p – node capacity: µ(S) ≤ p

� Utilization
np

TM
T

)(
)(=∆

8
Sweep

� Neighboring nodes, delimiting keys.

� A sequence σ = S0, k1, S1, … , km, Sm of vertices and keys of a

tree T is called a sweep iff each pair Si-1, Si is a pair of neighbors
and ki is their delimiting key.

9
S(b)-tree properties

� b – locality parameter

� q – tree order: |k(S)| ≥ q

� p – tree rank: µ(S) ≤ p

� µmax(K) – maximal key weight

� Sweep σ composed of m+1 nodes is dense if µ(σ) ≥ mp

� Sweep σ composed of m+1 nodes is incompressible w.r.t. p and
q if nodes of σ cannot be "compressed" into m nodes with the
same rank p and order q.

� T is b-locally dense if all its sweeps of length b are dense.

� T is b-locally incompressible if all its sweeps of length b are
incompressible.

10
S(b)-tree definitions

Let K be a weighted linearly ordered set of keys.

1. A structured b-locally dense tree T of order q and rank p is called a
DS(b)-tree of order order q and rank p, if its parameters b, q, and p
are natural numbers satisfying

q > 0, q ≥ b, p ≥ 2q µmax(K)

2. A structured b-locally incompressible tree T of order q and rank p
is called a S(b)-tree of order order q and rank p, if its parameters b,
q, and p are natural numbers satisfying

q > 0, q ≥ b, p ≥ 2q µmax(K)

Respective tree classes are denoted by DS(b,q,p) and S(b,q,p).

11
Hierarchy of balanced trees

� Class of all structured trees is

� If µ ≡ 1 on K then class of B-trees of order q is S(0,q,2q).

� Class of 2-3-trees is S(0,1,2).

� S(0,q,p) = DS(0,q,p)
S(1,q,p) = DS(1,q,p)
S(1,q,p) ⊂ DS(1,q,p) for all b > 1

� If b’ < b < q ≤ p/ 2q µmax(K) then
S(b,q,p) ⊂ S(b’,q,p)

� The same is not true for DS(b)-trees

� If b < q < q’ ≤ p/ 2q µmax(K) then
S(b,q,p) ⊂ S(b,q’,p)

DS(b,q,p) ⊂ DS(b,q’,p)

U U
0 2

),,0(
> >q qp

pqS

12
Lower bounds

Theorem 1. Let T ∈ DS(b,q,p) and n > q+1 number of tree nodes.

Then

Theorem 2. If locality parameter b > 0 is fixed, then for any ε > 0 two
parameters q ≥ b and p ≥ 2q µmax(K) can be chosen such that for any

tree T ∈ DS(b,q,p) having n ≥ (b+1)(q+1) nodes its utilization is

Theorem 3. For any ε > 0 three parameters b > 0, q ≥ b and
p ≥ 2q µmax(K) can be chosen such that for any tree T ∈ DS(b,q,p)
having n ≥ (b+1)(b+1) nodes its utilization is

n

b

q

q

b

b
T

1

11
)(

+
−

++
=∆

ε−
+

=∆
1

)(
b

b
T

ε−=∆ 1)(T

13
Algorithms

Theorem 4.
Search, insertion, and deletion of a key in a S(b)-tree containing n
nodes can be performed in time O(log n).

