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S(b)-Tree Library: an Efficient Way of Indexing Data

Konstantin V. Shvachko

ABSTRACT. We present a library for maintaining external dynamic dictionaries
with variable length keys. A new type of balanced trees, called S(b)-trees, is
introduced which contrary to the well-known B-trees provide optimal packing
of keys of variable length, while the data access time remains logarithmic, the
same as for B-trees. S(b)-trees are implemented as a stand-alone library. The
library functionality includes means for creating, storing, and performing the
basic operations for S(b)-trees. The library documentation, source code, and

executables are available at http://namesys.botik.ru/~shv/stree

Introduction

Indexing is a common mechanizm used in database retrieval. Any database
programming system provides means for the creation and maintanence of indexes.
Most index implementations are based on balanced trees.

The indexing problem is usually referred to as the problem of “maintaining
dynamic dictionaries”. A dynamic dictionary is a data structure for storing dictio-
nary elements, called keys, together with algorithms for accessing, inserting, and
deleting a key.

A number of variants of balanced trees are known. AVL-trees [AVL62], 2-3-
trees ([LD91], [Y78]), red-black-trees [W93] and some other variants of balanced
trees with low branching of internal nodes that are mostly appropriate for repre-
sentation of internal dictionaries.

From the practical viewpoint, B-trees ([B72], [BM72], [K73], [TF82], [W86]),
together with all their modifications, like BT-trees [W93|, B*-trees [M77], (a,b)-
trees [LD91], are considered to be the most common data structure for represent-
ing indexes in external memory. Unfortunately, B-trees have a serious disadvantage
([K73], [PS92]) in the case of variable length keys, since in this case they can lead
to an exhaustive waste of memory.
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We introduce a new type of balanced trees, called S(b)-trees, which contrary
to B-trees provide optimal packing of keys of variable length, while the data access
time remains logarithmic, the same as for B-trees.

S(b)-trees are implemented as a stand-alone library. The library functionality
includes means for creating, storing, and performing the basic operations for S(b)-
trees. The implementation is written in C+4 and a pure C function interface is
provided. The S(b)-tree library is designed to be platform-independent, and is
supposed to run both on UNIX, and MS Windows platforms.

1. Common properties of balanced trees

Balanced trees are intended to provide an efficient solution to the problem of
maintaining dynamic dictionaries.

A balanced tree stores keys chosen from a finite set of keys K. K is linearly
ordered, and the keys are placed in the tree according to the ordering. Each node
of the tree contains a number of keys. Leaves don’t contain anything else, while
the internal nodes additionally contain references to other nodes. The number of
references in an internal node equals the number of keys in the node plus 1. An
internal node S composed of m keys is denoted by

S = (S0, ko, ey Siy kiy Sit1y ooy Em—1, Sm)

Trees satisfying the properties below are called structured trees.

e All paths in the tree from the root to a leaf have equal lengths.

e For any node S of the tree, the keys it stores are located in S according
to K’s linear ordering, that is k; is less than k; for ¢ < j.

e For any key k; of an internal tree node
S = (So, ko, -, Siy kiy Sit1y -y km—1,5m) all keys located in the sub-tree
accessible via the reference S; to the left of k; are less than k;, and all
keys located in the sub-tree accessible via the reference S;41, which is to
the right of k;, are greater than k;.

The last property is the bases of an efficient tree search. The search algorithm
is common to all structured trees. Starting from the root, one should look for the
given key k in the current node, and either find the key in the node (the searching
is finished) or find a pair of adjacent keys k;_1, and k; such that k;—1 <k <k;. In
the latter case searching is continued in the sub-tree referenced by S;.

2. B-Trees

DEFINITION 2.1. A B-tree of order q is a structured tree whose nodes except
for the root contain at least q, and at most 2q keys. The root must contain at least
1 key, and at most 2q.

The restrictions associated with the tree order ¢ provide high branching of the
B-tree internal nodes, and guarantee a fast tree searching.

It is well known that searching, insertion, and deletion in a B-tree can be
performed in time proportional to the height of the tree, which is at most log, n,
where 7 is the number of nodes in the tree.

A wtilization 6(T) of a B-tree T with n nodes is defined to be the ratio of the
total number |T'| of keys in the tree to the maximal possible number 2¢gn of keys in
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an n-node B-tree. Since the minimal number of keys is gn, and the maximal is 2gn
the utilization is bounded by
! <4(T) = il <1
2 2qn
The 1/2 lower bound appears to be acceptable, but in practice things look
different. Indeed, in an implementation of B-trees it is natural to use fixed size
blocks to store the tree nodes — one block per node. According to the definition of
B-trees each block must fit 2¢ keys. Suppose that the key set K consists of keys of
different lengths, and that their maximal length is [. Then the block size should be
at least 2¢l. This means that if a node stores keys of size 1/10, then it is only 1/10
full even if the number of keys is maximal. Therefore, actually we cannot guarantee
any lower bound greater than 0 for the utilization of the tree when key lengths are
taken into account.

3. Definition of S(b)-trees

To improve tree utilization a weight function p for the key set K have to be
defined. From the practical viewpoint the weight is the number of bytes the key is
stored in. The weight is different to the length since sometimes additionally to the
key itself it is necessary to store some extra information, like the key length or the
ending zero byte. For any key k, u(k) denotes the weight of k. pimax(K) denotes
the maximum of key weights in K. For any node S, 11(S) denotes the node weight,
that is the total weight of keys contained in S, while M (.S) denotes the total weight
of keys contained in the tree rooted at S.

A S(b)-tree (read as sweep b tree) is characterized by the following three para-
meters:

(1) b — the locality parameter,
(2) g — the tree order, and
(3) p — the tree rank.

The tree order ¢ specifies the minimal number of keys in a non-root node of
the tree. The root must contain at least one key. The tree rank p specifies the
maximal total weight of keys in a node. We say that a tree node S is well-formed
if the number of keys |S| > ¢ (]S| > 1 for the root), and if the total weight of the
node u(S) <p.

Tight packing of keys in S(b)-trees is provided by the incompressibility property.

Let us consider m + 1 adjacent nodes of the same level of the tree and m
delimiting keys, which separate the references to the adjacent nodes in the nodes’
common parent. Such a collection of nodes, and their delimiting keys is called a
sweep, and m is defined to be the length of the sweep. The sweep of length m is
called compressible if one can construct a sweep of smaller length containing all the
keys of the initial sweep, and composed of at most m well-formed nodes, and at most
m — 1 delimiting keys. Otherwise, the sweep is called incompressible. Therefore, a
tree is m-incompressible if any sweep of length m in it is incompressible.

DEFINITION 3.1. An S(b)-tree of order q, and rank p is a structured tree that
is incompressible with respect to the locality parameter b, such that
(1) b>0
(2) ¢g=2b & qg>1
(3) P = 24 pmax(K)
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The restrictions above are essential for the correctness proofs.

In [PS92], [S950bn], [S95CMA]| we proved that S(b)-trees generalize B-trees,
meaning that if the weight function u equals 1 on K then each B-tree of order g is
a S(0)-tree of order ¢, and rank 2q.

4. Utilization of S(b)-trees

A wutilization A(T) of an n-node S(b)-tree of rank p is the ratio of the total
weight of the tree M(T), that is the sum of weights of keys stored in the tree,
devided by the maximum possible weight of an n-node S(b)-tree of rank p:

M(T)
np
We sketch a proof below of the following key result

A(T) =

THEOREM 4.1. For any linearly ordered weighted finite key set K, and for any
€ > 0 the three parameters b > 0, ¢ > b and p > 2qumax(K) can be chosen in such
a way that for any S(b)-tree T of order q, and rank p, composed of keys from K
and containing at least (b+ 1)% vertices,

AT)>1—¢
where € is inversely proportional to b.

Under the assumptions of the theorem, for any n—node S(b)-tree we prove that
b q b+1

b+1g+1 n

The proof of the lower bound is based on the following technical lemma.

A(T) >

LEMMA 4.1. Consider an n—-node structured tree T of order q such that n >

q+ 1. Then the number of leaves x of the tree is bounded by
N gn—1)+1
qg+1

Lemma 4.1 can be proven using induction by the tree height.

To prove the theorem let us consider an n-node S(b)-tree T' and a sweep o
of T', composed of all leaves of the tree together with their delimiting keys. Note
that this sweep includes all keys contained in the tree. Let us partition ¢ into the
maximal number s of disjoint sub-sweeps o; = S¢, ki, S%, ... ki, Si (i=1,...,s) of
length b.

By Definition 3.1 all sweeps of length b in T" are incompressible, which implies
that u(c;) > bp. Therefore, since the chosen sweeps are disjoint we have

M(T) = p(o) > Y ulos) > bps

i=1
Let z be the number of leaves of T'. Then the number of chosen sub-sweeps is

x
S =
b+1
Applying Lemma 4.1 we obtain

T 1 gln—1)+1 1 q 1 g—1
L S 1> - -
ST b1l g+l "br1g+1 brilgri
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Using the two bounds above we get

M(T b 1.5 -1
I) 2y b a1 b a1,
np n b+1lg+1 nbdb+1lqg+1
which implies the desired bound.
This lower bound means that S(b)-trees provide almost optimal packing of any
given finite set of keys. Special cases of this bound are proven in [PS92] and

[S95CMA.

A(T) =

5. The sketch of the algorithms

The algorithm to search in an S(b)-tree is the same as for all other balanced
trees, (see Section 2).

The algorithms for insertion and deletion in an S(b)-tree are more complicated
then the corresponding ones for B-trees. The difficulty is that in the S(b)-tree case,
balancing of a modified node S involves additional b neighboring nodes to the left
and to the right. For B-trees, insertions and deletions involve at most one neighbor.

It can be proven that an insertion, and a deletion of a key in an n-node S(b)-
tree can be performed in at most C'log(n) time where C is a constant that is
independant of n and proportional to the locality parameter b.

5.1. Insertion. Using the search algorithm an insertion first verifies whether
the given key k is contained in the given tree T. If k is in T then the insertion
is finished. Otherwise the search procedure returns a leaf S, and a key k; in it,
before which the key k must be inserted. k is inserted in its corresponding place
in S, and the insertion starts balancing the tree. Balancing is performed by a
special procedure, which is a common part of both the insertion and the deletion
algorithms. Balancing starting from the enlarged leaf S balances all the nodes that
lay on the path from the root of the tree to S.

5.2. Deletion. Similarly to insertion, a deletion begins with a search. If the
given key k is not found in the given S(b)-tree T, then the deletion is finished.
Otherwise the search returns a node S, and a key k; in it, that must be deleted.
Note that S can be either an internal node or a leaf. The case when S is not a
leaf can be easily reduced to the case of deletion from a leaf. If S is internal, we
consider the sub-tree accessible via the reference S; 11, which is to the right of k;
in S. Take the left most leaf S’ in the sub-tree, and the smallest key k' in S/, and
replace k; by k' in S. Thus the problem is reduced to the deletion of &’ from the
leaf node S’. Now let S be a leaf, and k; be the key that must be deleted from S.
The deletion algorithm removes k; from S and starts balancing the tree with the
same balancing algorithm that is used in insertions.

5.3. Balancing. The Balance() procedure is the main common part of the
insertion and the deletion algorithms. Balancing starts at the leaf node S given
as an input parameter to the procedure. After working on the level of the current
node S the procedure takes for balancing the direct parent of S. The process
proceeds further up to the tree root. The balanced tree is the result of the procedure
Balance().

For any current node S the procedure decides to balance S if one of the following
three conditions holds.

(1) One of the b+ 1 sweeps of length b, containing S, is not incompressible.
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(2) 1S <q.
(3) u(S) > p.

In the first case the procedure Balance_B() is used for balancing S. If Condition
2 holds for S then Balance_C() is called. And in the case of Condition 3 S is balanced
by Balance_W(). When none of the conditions holds, Balance() skips the level.

Each of the three procedures restores the structure of the S(b)-tree disturbed
locally for one, two or three vertices of the current tree level. While correcting
the structure of the tree on the current level, the algorithm should change also the
ancestors of S. This can break in turn the balance conditions for the lower level
nodes. Such breakdowns are also local, since not more than three lower level nodes
can be changed: the direct parent of S, and two its neighbors to the left and to
the right of S. Coming to the next level of the tree Balance() merges the modified
nodes of the level, and balances them in its entirety.

The computation stops at the tree root. Thus the algorithm examines all the
nodes that lay on the path from the root to the modified leaf, and balances them
if necessary. Only these nodes and their neighbors (b to the left and b to the right)
in the tree can be transformed by the algorithm.

After balancing the structure of the S(b)-tree is restored, all tree nodes are
well-formed, and all sweeps of the tree are incompressible.

6. The specifications

Let T be a structured tree and S be its node. Below we present a list of
variables and instrumental procedures used to describe the algorithms.

6.1. Denotations and definitions. With respect to the current node S a

sweep
<Lb,1, lbfl, ey LQ, lo, S, To, Ro, ey Th—1, Rb,1>
composed of b neighbors and their delimiting keys to the left and to the right of S
is called the vicinity of S, where
e S is the current node;

L; denotes the i-th left neighbor of S;
R; denotes the i-th right neighbor of S;
l; is the delimiting key of nodes L; and L;_1;
r; is the delimiting key of nodes R; and R; .
F denotes the direct parent of S.
FL; (FR;) denotes the parent of node L; (R;).
Fl; (Fr;) denotes the node containing the delimiting key I; (r;).
L, l;,R;,r;, FL;, FR;, Fl;, Fr; are the local variables of the procedures.
WW (S) means that u(S) < p.
WC(S) means that |S| > g¢.
WF(S) means that WW(S) and WC(S) hold.
IC(0) means that sweep o is incompressible.
W B(S) means that IC(c) holds for any sweep o of length b containing S.
Sweepy"(S) denotes the m-th (m = 0,...,b) sweep of length b containing
node S, namely

Sweepg(s) = <Lbflalb717"'7L07107S>
Sweepl(S) = (S,r0,Ro,... o1, Ro_1)
Sweepy' (S) = (Ly—m—1,lp—m—1,---,Lo,10, 5,70, Ros .- -, "m—1, Rm—1)
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6.2. Instrumental procedures. The following procedures and functions are
used for describing the algorithms.

o Search(T, k), given an S(b)-tree T and key k, verifies whether the key
is contained in the tree. The result of the function is (IsFound, S, k;).
IsFound is a Boolean variable that specifies whether k is found in the tree
or not. S is the node that was visited last while searching in the tree, and
k; is the minimal key of S that is greater than or equal to the given key
k.

o MakeVicinity(S) initializes the local variables L, l;, R;, r;, FL;, FR;, Fl;, F'r;
according to S.

e Replace(S, P, Q), substitutes the portion of the node S that coincides with
P, with Q.

e Functions LeftOf(S, k) and RightOf(S, k) specify two portions of S, that
are to the left and to the right of key k in S, respectively.

e For each m = 0,...,b we define a function Compress™ that is applied to
compressible sweeps of length b. The result is an incompressible sweep of
length b — 1, composed of b well-formed nodes. Namely, if

Compress™ (Ao, a1, ...,ap, Ap) = (Co,c1y. .., b—1,Ch1)

then the resulting sweep is obtained by distributing the contents of node
A, between the other nodes of the initial sweep in such a way that a; < ¢;
fori=1,...,m,and ¢; < aj41 fori =m,... . b—1.

o ComputeSets(S) calculates seven subsets of the set of keys of node S:
MlLeft, MRight, MDelimL, MDelimR, MDelim, MLeft, and MRight, de-
fined below.

o ChooseAny(E), ChooseMaz(E), and ChooseMin(E) for the given key set
FE return, respectively, an arbitrary, the maximum, and the minimum keys
of the set.

o SearchMinimal(S) looks for the minimal key in the sub-tree rooted at S,
returns (S’, k') where &’ is the minimal key, and S’ is the leaf that contains
K.

o GlueParents(F) takes the parent F' of the current node S, the left, and the
right neighbors of F', glues them into one node, and returns the result.
A more sophisticated variant of this function is to check before gluing
whether the neighbors have been modified, and glue to F' only the modified
ones.

e CreateNewRoot(S) creates the new root of the tree, containing the only
reference to the given node S.

o ReleaseRoot(). If the root of the tree contains only one reference to a node
S, and no keys, then this root is removed, and S is assigned to be the new
root of the tree.

e [P, d, Q] creates a new node composed of all keys, and node references (in
case of internal nodes), of the given nodes P and @, with the key d between
them. E.g., [(LQ, ll, Ll), d, (Ro, T, Rl)] = (Lo, ll, Ll, k’, RQ, T, Rl)

If k(S) denotes the set of all keys of node S, then the definitions of the subsets
are as follows.
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MLeft = {dek(S)|IC({Lp-1,lp—1,-.-,Lo,lo, LeftOf(S,d)))}
MRight = {d e k(S) | IC({RightOf(S,d),ro, Ro, .., Tp—1, Rp—1))}
MDelimL = {de€ k(S)| WF(RightOf(S,d))}

MDelimR = {d € k(S) | WF(LeftOf(S,d))}

MDelim = MDelimL N MDelimR

MLeft = k(S)\ MLeft

MRight = k(S)\ MRight

The sets, and the ComputeSets() procedure are used in Balance_W() to control
the process of computation.

6.3. The balance stages. As we mentioned above, to balance the tree on
each tree level one of the three balance procedures is called. In each case balancing
is performed by redistributing the keys within the b-vicinity of the current node S
in such a way that both WF(Q) and WB(Q) hold for any node @ of the vicinity
after the balancing is finished. The explicit algorithms are outlined in Appendix.

Procedure BALANCE_W is used to balance the input tree when the current
vertex S weight is larger than p (=W W (S)), while the other two properties WC(S)
and W B(S) are satisfied for S. The procedure consists of five stages. The decision
on whether a stage should be performed or not is based upon the interrelation of
the seven subsets of k(.5).

Informally,

o akey d from k(S) belongs to MLeft ( MRight ) iff the current vertex S can
be split into two parts in such a way that the fragment of the b-vicinity
of S which is to the left (right) of d is incompressible;

e akey d from k(S) belongs to MDelimL ( MDelimR ) iff the current vertex
S can be split into two parts in such a way that the weight of the part of
S that is to the right (left) of d is not greater than p, while the number
of keys of the part is at least q.

The “Compression” stage is performed when the intersection MLeftN MRight is
not empty, meaning that all keys of S can be distributed between the other nodes
of the vicinity and S can be eliminated by that.

The “Move left” stage is performed if MLeft is not empty, which means that a
number of keys of S can be moved to the left part of the vicinity.

The “Move right” stage is analogous.

If after shifting of as many keys as possible from S into the left and right parts
of the vicinity, the weight of the keys remaining in S is still greater than p, then
the “Split” stage is performed in order to partition S into two parts at least one of
which (actually the left one) is well-formed. If the second node is also well-formed,
then balancing is finished.

Otherwise, the “Recursion” stage is invoked. It balances the remaining not
well-formed node by recursive call of BALANCE_W. It can be shown that the
depth of this recursion is constant.

The procedure BALANCE_B is used to balance the input tree when one of
the sweeps Sweepy'(S) (m = 0,...,b) is compressible (=W B(S)). Balancing in
this case is performed by compressing one or two sweeps of the b-vicinity of S. It
can be shown that elimination of more than two vertices of the vicinity is impossi-
ble. Starting from the left most sweep Sweep(S) BALANCE_B scans the vicinity
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and compresses each compressible sweep found. After the second compression it
terminates.

Procedure BALANCE _C is called when the number of keys in the current node
S is less than g (=W C(S)). In this case we join S with one of it’s neighbors and
call BALANCE_W for the resulting node if required.

7. S(b)-tree library interface

The S(b)-tree library implements the algorithms described above, and provides
means for creating, storing, and performing the basic operations for S(b)-trees. The
implementation is written in C4++ and a pure C function interface is provided. The
S(b)-tree library is designed to be platform-independent, and it runs both on UNIX
and Windows NT /95 platforms.

7.1. Keys. The key type is S.LKEY. To create a key a S_CreateKey(Key,
String, Length) function is used. Given an array of bytes and its length, it sets
the given key to the specified string value.

Note that one can store not only string-valued keys, but keys of an arbitrary
structure by providing a conversion of a user defined key to a byte array. E.g.,
a number can be easily converted to a string using, say, the C run-time library
routines itoa(), or ltoa().

A key weight equals the length of the byte array plus a constant given by
S_.EMPTY_KEY_WEIGHT.

7.2. Maintaining the trees. Several functions provide means for creating
new S(b)-trees, opening existing ones, saving, and closing the tree modification
sessions.

In order to create an S(b)-tree it is necessary to specify the following parame-
ters.

e FileName is the name of the file where the tree will be stored.

e b is the locality parameter. The better packing you need the greater b
should be chosen.

e g is the order of the S(b)-tree. It specifies the minimal number of keys
in a node, and is intended to provide high branching of the tree internal
nodes.

e p is the tree rank. It is the size of the block for storing the tree nodes,
meaning that a node weight cannot exceed p.

e MuMax characterizes the key set K, in the way that all keys in K have
length not greater than MuMax.

A node weight is the sum of weights of keys contained in the node plus a con-
stant S EMPTY NODE_WEIGHT. In the implementation we need to store some
header for each tree node that contains particularly the number of keys in the
node, which is required for correct reads of tree nodes. Thus, actually the tree rank
according to our definitions in Section 4 is p — S_LEMPTY_NODE_WEIGHT.

The restrictions for the parameters that provide correctness of the algorithms
are as follows:

(1) bvb>1
(2) ¢2b & ¢>2
(3) p > 2¢ MuMax + S_LEMPTY _NODE_WEIGHT
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S_CreateTree( ResTreeHandle, FileName, b, ¢, p, MuMax )
creates an empty tree with the specified parameters, and returns the new tree
handle ResTreeHandle, which provides access to the tree in other functions.
Another way to get access to an S(b)-tree is to load it, which is performed by
S_LoadTree( ResTreeHandle, FileName ).
S_CloseTree( TreeHandle )
closes the tree, saves it on disk in the file it was created at or loaded from, and
releases the tree handle.
S_SaveTree( TreeHandle )
saves the specified tree on disk in the file it was created at or loaded from, but
does not close the tree leaving it accessible via the tree handle.

7.3. The basic tree operations. The main algorithms of search, insertion,
and deletion are implemented in the following functions

S_Search( TreeHandle, Key, IsFound )

S_Insert( TreeHandle, Key )

S_Delete( TreeHandle, Key )

7.4. Additional operations. Since the set of keys stored in an S(b)-tree is
linearly ordered, it is natural to provide access to the first, the last key in the
dictionary, the next, and the previous keys with respect to the given one.

S_First( TreeHandle, FirstKey, IsFound )

S_Last( TreeHandle, LastKey, IsFound )

S_Next( TreeHandle, InpKey, NextKey, IsFound)

S_Prev( TreeHandle, InpKey, PrevKey, IsFound)

Note that the given key InpKey should not necessarily be contained in the tree.
To find the next (the previous) means to find the minimal (maximal) key in the
tree that is greater (less) than the input key.

7.5. S(b)-tree properties. The rest of the functions return the specified tree
parameters: b, ¢, p, and MuMax, and the tree intrinsic properties:

Number of nodes in the tree
Number of keys in the tree
The tree total weight

The tree height

The tree utilization

The prototypes of the functions are:

int S_TreeLocality( TreeHandle )

int S_TreeOrder( TreeHandle )

int S_TreeRank( TreeHandle )

int S_TreeMaxKeyWeight( TreeHandle )
long S_TreeNrNodes( TreeHandle )

long S_TreeNrKeys( TreeHandle )

long S_TreeWeight( TreeHandle )

int S_TreeHeight( TreeHandle )

double S_TreeUtilization( TreeHandle )
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8. Conclusion

Balanced trees are the standard data structures for indexing information. The
paper introduces a new type of balanced trees, called S(b)-trees. S(b)-trees gener-
alize well known B-trees for the case of variable length keys. In Theorem 4.1 we
present a lower bound of utilization of an S(b)-tree, which shows that S(b)-trees
provide almost optimal packing of any given finite set of variable length keys. We
describe logarithmic running time algorithms for the S(b)-tree-based dictionary
search and update operations. S(b)-trees are implemented as a stand-alone library.
The library functionality includes means for creating, storing, and performing an
extended set of operations for S(b)-trees.

Besides the library, S(b)-trees were implemented in two different software sys-
tems with the common feature that both of them are designed to store completely
unstructured data collections.

The high-level universal programming language Starset [G94] was developed to
generalizes the traditional relational database approach. Starset is based on the set
data model, which eliminates restrictions of the relational approach, such as multi-
valued attributes, varying arity, null values, etc. The Starset programming language
uses S(1)-trees described in [PS92] for representing its set data aggregates.

The high-performance Tree File System (TreeF'S) was designed to break down a
tradeoff common for block oriented file systems where desire to increase the system
block size in order to accelerate disk access contradicts the necessity of keeping the
size small enough to avoid waste of disk space. A substantially modified variant
of S(1)-trees is implemented in the Tree File System. This is probably the first
attempt to represent a whole file system by a balanced tree in a Unix—like operating
system. We have conducted experiments that show that most file operations are
faster in TreeFS, especially for small files, and that the disk space utilization is
higher compared to traditional file systems. TreeFS is implemented as a virtual FS
under the Linux operating system.
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Appendix A. The main procedures

Procedure Insert(T, k)

(IsFound, S, k;) = Search(T, k);

if IsFound = True then return fi;

/* k haven’t been found means that S is a leaf */
Replace(S, (ki) , (k,k;)) /* insert k before k; */
Balance(S); /* balance T starting from leaf S */
EndProcedure

Procedure Delete(T, k)
(IsFound, S, k;) = Search(T, k);
if IsFound = False then return fi;
if S is not a leaf then
/* S is internal, and contains reference */
/* Sit1, which is to the right of k;in S */
(8, k") = SearchMinimal(S;+1);
Replace(S, (ki) , (k"));
S =5
k= k',
fi
/* S is aleaf */
Replace(S, (k) ,()) /* delete k from leaf S */
Balance(S); /* balance T starting from leaf S */
EndProcedure

Procedure Balance(S)

while S is not the root do
if -WB(S) then F := Balance B(S);
else if “-W(C(S) then F := Balance_C(S);
else if ~-WW (S) then F := Balance_W(S);
else S := F; continue;
fifi fi
S := GlueParents(F);

od

/* S is the root now */

if |S| = 0 then

ReleaseRoot();

fi

if =WW (S) then
CreateNewRoot(S);

Balance_W(S);
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fi
EndProcedure

Procedure Balance_.W(S)
Make Vicinity(S);
ComputeSets(S);

/* Compression: */
/* Distribute all keys of S between */
/* the other nodes of the vicinity */
if MLeft N MRight # () then
d := ChooseAny(MLeft N MRight);
(Xp_1,Tb—1,...,21,X0) := Compress®(Ly_1,lp_1,. .., Lo, lo, LeftOf(S, d));
(Yo,y1, -, Yp—1, Yp—1) := Compress’(RightOf(S, d), 0, Ro, - ., 76—1, Rp—1);
fori:=1tob—1do
Replace(F Ly, (L;), (X3));
Replace(Fl;, (1;), (x;));
Replace(FR;, (Ri), (Yi));
Replace(Frs, (rs), (yi));
od

Replace(F R, (Ro) , (Yo));
Replace(F'ro, (ro) ,{d));
if FLg = F then
Replace(F, (Lo,lo, S), (Xo));
else
Replace(F, (S), (Xo));
Replace(Flo, (lo) , {z1));
Replace(F Lo, (X1,x1, Lo), (X1));

fi
return F;
fi

/* Move left: */
/* Move to the left part of the vicinity */
/* as much keys from S as possible */
if MLeft # () then
if MDelimL N MLeft # () then d := Choose Any(MDelimL N MLeft);
else d := ChooseMaz(MLeft); fi
(Xp_1,Tp—1,...,21, X0) := Compress®(Ly_1,lp_1,..., Lo, lo, LeftOf(S, d));
Y := RightOf(S, d);
fori:=1tob—1do
Replace(F Ly, (L;), (X3));
Replace(Fl;, (1;) , (x:));
od
Replace(F Lo, (Lo) , (Xo0));
Replace(Flo, (lo) , (d));
Replace(F, (S),(Y));
if WW(Y) then return F; fi
S:=Y;
Make Vicinity(S);
ComputeSets(S);

fi

/* Move right: */
/* Move to the right part of the vicinity */
/* as much keys from S as possible */
if MRight # () then
if MDelimR N MRight # () then d := ChooseAny(MDelimR N MRight);

13



14 KONSTANTIN V. SHVACHKO

else d := ChooseMin(MRight); fi
X := LeftOf(S, d);
(Yo, Y1, Yb—1,Yp—1) := Compress®(Right Of(S,d), 0, Ro,...,"s—1, Rp—1);
fori:=1tob—1do
Replace(FR;, (R;i),(Yi));
Replace(Frs, (ri), (yi));

od
Replace(F R, (Ro) , (Y0));
Replace(Fro, (ro) , (d));

Replace(F, (S),(X));
if WW(X) then return F; fi
S:=X;
Make Vicinity(S);
ComputeSets(S);

fi

/* Split: */

/* Even after moving out of S all keys that fit into the */
/* other nodes of the vicinity S is still too large, and */
/* need to be split into two nodes */

if MDelim # 0 then d := ChooseAny(MDelim);

else d := ChooseMaz(MDelimR); fi

X := LeftOf(S, d);

Y := RightOf(S, d);

Replace(F, (S),(X,d,Y));

if WW(Y) then return F; fi

/* Recursion: */

/* Even after splitting off a node X the remaining */
/* part Y is still too large, */

/* Balance_W() will be applied to Y again */

F := Balance-W(Y);

return F;

EndProcedure

Procedure Balance_B(S)
MakeVicinity(S);

/* First Compression: */
/* Check which of the first b sweeps of the vicinity is */
/* compressible, and compress the first one found */
for m:=0tob—1do

if =IC(Sweepy*(S)) then break; fi
od

if m < b then /* a compressible sweep is found, compress it */
(bemflvxbfmflv -, 71, X0, Y0, Y0, Y1, - - - 7ym—17Ym—1> =
Compress®™™ (Sweep}™ (S));
fori:=1tob—m—1do
Replace(FL;, (L;) ,(X;));
Replace(Fl;, (1;) , (x4));
od
for i :=0tom—1do
Replace(FR;, (R;) , (Y3));
Replace(Frs, (ri), (yi));
od
if FLo = F then
Replace(F, (Lo, lo, S) , (X0));



S(B)-TREE LIBRARY: AN EFFICIENT WAY OF INDEXING DATA

else
Replace(F, (S), (Xo));
Replace(Flo, (lo), (z1));
Replace(F Lo, (X1,x1, Lo), (X1));

fi

m:=m+ 1;

S = Xo;
MakeVicinity(S);

fi

/* Second Compression: */
/* Among the remaining sweeps of the vicinity check which */
/* one is compressible, and compress the first one found */
for m :=m to b do

if =IC(Sweep}*(S)) then break; fi
od

if m > b then return F; fi
/* A compressible sweep is found, compress it */

(Xb—m—1,Tb—m—1,---,T1,X0,50, Y0, Y1, - - -, Ym—1, Ym—1) 1= Compress®~™ (Sweep]"(S5));

fori:=0tob—m—1do
Replace(F Ly, (L;), (X3));
Replace(Fl;, (1;) , (x:));

od

fori:=1tom—1do
Replace(FR;, (Ri), (Yi));
Replace(Frs, (r:), (yi));

od

if FRo = F then
Replace(F, (S,ro, Ro), (Yo));

else
Replace(F, (S), (Yo));
Replace(Fro, {ro), (y1));
Replace(F Ro, (Ro,y1, Y1), (Y1));

fi

/* It is proven that not more than 2 nodes of the */

/* vicinity can be shrunken */

return F;

EndProcedure

Procedure Balance_C(5)
MakeVicinity(S);

/* If S has too few keys we glue it with one of */
/* the nearest neighbors, and apply Balance-W */
/* to the result if necessary */
if |F| > 0 then /* at least one key is in F' */
if FLo = F then
X := [Lo, o, S;
Replace(F, (Lo, o, S), (X));
else /* FRo = F, since F contains at least one key */
X :=[S,r0, Rol;
Replace(F, (S,ro, Ro), (X));
fi
else /* there is no keys in F only the reference to S */
if |[FLo| > 1 then
X :=[Lo,lo, S];
Replace(F, (S), (X));

15
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Replace(Flo, (lo) , {11));
Replace(F Lo, (L1,l1,Lo),{(L1));
else /* |[FRo| > 1*/
X :=[Lo,lo, S];
Replace(F, (S), (X));
Replace(F'ro, (ro) , (r1));
Replace(FRo, (Ro, 71, R1),{R1));
fi
fi

if - WW(X) then

F := Balance_.W(Y);
fi
return F;
EndProcedure
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